Learn more

Refine search


Results (1-50 of 159 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
20.a3 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, -1, 0]$ \(y^2=x^3+x^2-x\)
80.b3 80.b \( 2^{4} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1, 0]$ \(y^2=x^3-x^2-x\)
100.a3 100.a \( 2^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -33, 62]$ \(y^2=x^3-x^2-33x+62\)
180.a3 180.a \( 2^{2} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12, -11]$ \(y^2=x^3-12x-11\)
320.a3 320.a \( 2^{6} \cdot 5 \) $1$ $\Z/2\Z$ $0.826873828$ $[0, 1, 0, -5, -5]$ \(y^2=x^3+x^2-5x-5\)
320.f3 320.f \( 2^{6} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5, 5]$ \(y^2=x^3-x^2-5x+5\)
400.c3 400.c \( 2^{4} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -33, -62]$ \(y^2=x^3+x^2-33x-62\)
720.h3 720.h \( 2^{4} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12, 11]$ \(y^2=x^3-12x+11\)
900.b3 900.b \( 2^{2} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.326221266$ $[0, 0, 0, -300, -1375]$ \(y^2=x^3-300x-1375\)
980.h3 980.h \( 2^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -65, -118]$ \(y^2=x^3-x^2-65x-118\)
1600.c3 1600.c \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.561930274$ $[0, 1, 0, -133, 363]$ \(y^2=x^3+x^2-133x+363\)
1600.w3 1600.w \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -133, -363]$ \(y^2=x^3-x^2-133x-363\)
2420.a3 2420.a \( 2^{2} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.456518643$ $[0, 1, 0, -161, -596]$ \(y^2=x^3+x^2-161x-596\)
2880.f3 2880.f \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z$ $1.304906633$ $[0, 0, 0, -48, 88]$ \(y^2=x^3-48x+88\)
2880.m3 2880.m \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -48, -88]$ \(y^2=x^3-48x-88\)
3380.c3 3380.c \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.100044657$ $[0, 1, 0, -225, 820]$ \(y^2=x^3+x^2-225x+820\)
3600.be3 3600.be \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.261526195$ $[0, 0, 0, -300, 1375]$ \(y^2=x^3-300x+1375\)
3920.h3 3920.h \( 2^{4} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -65, 118]$ \(y^2=x^3+x^2-65x+118\)
4900.e3 4900.e \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.694375181$ $[0, 1, 0, -1633, -18012]$ \(y^2=x^3+x^2-1633x-18012\)
5780.f3 5780.f \( 2^{2} \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.655121899$ $[0, -1, 0, -385, 2130]$ \(y^2=x^3-x^2-385x+2130\)
7220.f3 7220.f \( 2^{2} \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.390482712$ $[0, -1, 0, -481, -2634]$ \(y^2=x^3-x^2-481x-2634\)
8820.g3 8820.g \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -588, 3773]$ \(y^2=x^3-588x+3773\)
9680.ba3 9680.ba \( 2^{4} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.602157773$ $[0, -1, 0, -161, 596]$ \(y^2=x^3-x^2-161x+596\)
10580.c3 10580.c \( 2^{2} \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -705, -5192]$ \(y^2=x^3+x^2-705x-5192\)
12100.j3 12100.j \( 2^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.882188396$ $[0, -1, 0, -4033, -66438]$ \(y^2=x^3-x^2-4033x-66438\)
13520.bc3 13520.bc \( 2^{4} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $11.70366650$ $[0, -1, 0, -225, -820]$ \(y^2=x^3-x^2-225x-820\)
14400.bl3 14400.bl \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1200, -11000]$ \(y^2=x^3-1200x-11000\)
14400.dz3 14400.dz \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.478796653$ $[0, 0, 0, -1200, 11000]$ \(y^2=x^3-1200x+11000\)
15680.n3 15680.n \( 2^{6} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -261, -1205]$ \(y^2=x^3+x^2-261x-1205\)
15680.de3 15680.de \( 2^{6} \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z$ $4.455849770$ $[0, -1, 0, -261, 1205]$ \(y^2=x^3-x^2-261x+1205\)
16820.c3 16820.c \( 2^{2} \cdot 5 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1121, 10310]$ \(y^2=x^3-x^2-1121x+10310\)
16900.p3 16900.p \( 2^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5633, 113762]$ \(y^2=x^3-x^2-5633x+113762\)
19220.c3 19220.c \( 2^{2} \cdot 5 \cdot 31^{2} \) $1$ $\Z/2\Z$ $2.921299342$ $[0, -1, 0, -1281, -11710]$ \(y^2=x^3-x^2-1281x-11710\)
19600.dm3 19600.dm \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.782551786$ $[0, -1, 0, -1633, 18012]$ \(y^2=x^3-x^2-1633x+18012\)
21780.q3 21780.q \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.829549799$ $[0, 0, 0, -1452, 14641]$ \(y^2=x^3-1452x+14641\)
23120.i3 23120.i \( 2^{4} \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z$ $8.039406440$ $[0, 1, 0, -385, -2130]$ \(y^2=x^3+x^2-385x-2130\)
27380.c3 27380.c \( 2^{2} \cdot 5 \cdot 37^{2} \) $1$ $\Z/2\Z$ $9.450107883$ $[0, 1, 0, -1825, 20028]$ \(y^2=x^3+x^2-1825x+20028\)
28880.b3 28880.b \( 2^{4} \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.536403816$ $[0, 1, 0, -481, 2634]$ \(y^2=x^3+x^2-481x+2634\)
28900.b3 28900.b \( 2^{2} \cdot 5^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -9633, 246988]$ \(y^2=x^3+x^2-9633x+246988\)
30420.c3 30420.c \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.167931565$ $[0, 0, 0, -2028, -24167]$ \(y^2=x^3-2028x-24167\)
33620.a3 33620.a \( 2^{2} \cdot 5 \cdot 41^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2241, 28826]$ \(y^2=x^3-x^2-2241x+28826\)
35280.bk3 35280.bk \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -588, -3773]$ \(y^2=x^3-588x-3773\)
36100.a3 36100.a \( 2^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.204105879$ $[0, 1, 0, -12033, -353312]$ \(y^2=x^3+x^2-12033x-353312\)
36980.a3 36980.a \( 2^{2} \cdot 5 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2465, -31570]$ \(y^2=x^3-x^2-2465x-31570\)
38720.p3 38720.p \( 2^{6} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -645, 4123]$ \(y^2=x^3+x^2-645x+4123\)
38720.dd3 38720.dd \( 2^{6} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $4.556028211$ $[0, -1, 0, -645, -4123]$ \(y^2=x^3-x^2-645x-4123\)
42320.ba3 42320.ba \( 2^{4} \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -705, 5192]$ \(y^2=x^3-x^2-705x+5192\)
44100.ca3 44100.ca \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -14700, 471625]$ \(y^2=x^3-14700x+471625\)
44180.c3 44180.c \( 2^{2} \cdot 5 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2945, -43280]$ \(y^2=x^3+x^2-2945x-43280\)
48400.l3 48400.l \( 2^{4} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.927146068$ $[0, 1, 0, -4033, 66438]$ \(y^2=x^3+x^2-4033x+66438\)
Next   Download to