Learn more

Refine search


Results (1-50 of 169 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
24.a3 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -24, -36]$ \(y^2=x^3-x^2-24x-36\)
48.a3 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[0, 1, 0, -24, 36]$ \(y^2=x^3+x^2-24x+36\)
72.a3 72.a \( 2^{3} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -219, 1190]$ \(y^2=x^3-219x+1190\)
144.b3 144.b \( 2^{4} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -219, -1190]$ \(y^2=x^3-219x-1190\)
192.b3 192.b \( 2^{6} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -97, 385]$ \(y^2=x^3-x^2-97x+385\)
192.d3 192.d \( 2^{6} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -97, -385]$ \(y^2=x^3+x^2-97x-385\)
576.b3 576.b \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.158547729$ $[0, 0, 0, -876, -9520]$ \(y^2=x^3-876x-9520\)
576.d3 576.d \( 2^{6} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -876, 9520]$ \(y^2=x^3-876x+9520\)
600.h3 600.h \( 2^{3} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -608, -5712]$ \(y^2=x^3+x^2-608x-5712\)
1176.i3 1176.i \( 2^{3} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -1192, 14720]$ \(y^2=x^3+x^2-1192x+14720\)
1200.d3 1200.d \( 2^{4} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.748483442$ $[0, -1, 0, -608, 5712]$ \(y^2=x^3-x^2-608x+5712\)
1800.m3 1800.m \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.665930347$ $[0, 0, 0, -5475, 148750]$ \(y^2=x^3-5475x+148750\)
2352.i3 2352.i \( 2^{4} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -1192, -14720]$ \(y^2=x^3-x^2-1192x-14720\)
2904.c3 2904.c \( 2^{3} \cdot 3 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -2944, 59644]$ \(y^2=x^3-x^2-2944x+59644\)
3528.d3 3528.d \( 2^{3} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.275508622$ $[0, 0, 0, -10731, -408170]$ \(y^2=x^3-10731x-408170\)
3600.v3 3600.v \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -5475, -148750]$ \(y^2=x^3-5475x-148750\)
4056.i3 4056.i \( 2^{3} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.725123114$ $[0, -1, 0, -4112, -95460]$ \(y^2=x^3-x^2-4112x-95460\)
4800.q3 4800.q \( 2^{6} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.249823046$ $[0, -1, 0, -2433, -43263]$ \(y^2=x^3-x^2-2433x-43263\)
4800.cc3 4800.cc \( 2^{6} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.068541721$ $[0, 1, 0, -2433, 43263]$ \(y^2=x^3+x^2-2433x+43263\)
5808.s3 5808.s \( 2^{4} \cdot 3 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.617274427$ $[0, 1, 0, -2944, -59644]$ \(y^2=x^3+x^2-2944x-59644\)
6936.p3 6936.p \( 2^{3} \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.080054440$ $[0, 1, 0, -7032, -218880]$ \(y^2=x^3+x^2-7032x-218880\)
7056.q3 7056.q \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.290579554$ $[0, 0, 0, -10731, 408170]$ \(y^2=x^3-10731x+408170\)
8112.be3 8112.be \( 2^{4} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -4112, 95460]$ \(y^2=x^3+x^2-4112x+95460\)
8664.j3 8664.j \( 2^{3} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.125190167$ $[0, 1, 0, -8784, 299376]$ \(y^2=x^3+x^2-8784x+299376\)
8712.u3 8712.u \( 2^{3} \cdot 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -26499, -1583890]$ \(y^2=x^3-26499x-1583890\)
9408.h3 9408.h \( 2^{6} \cdot 3 \cdot 7^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.592914450$ $[0, -1, 0, -4769, 122529]$ \(y^2=x^3-x^2-4769x+122529\)
9408.cc3 9408.cc \( 2^{6} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -4769, -122529]$ \(y^2=x^3+x^2-4769x-122529\)
12168.j3 12168.j \( 2^{3} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.949168092$ $[0, 0, 0, -37011, 2614430]$ \(y^2=x^3-37011x+2614430\)
12696.k3 12696.k \( 2^{3} \cdot 3 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.070300564$ $[0, -1, 0, -12872, 540540]$ \(y^2=x^3-x^2-12872x+540540\)
13872.p3 13872.p \( 2^{4} \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.984607485$ $[0, -1, 0, -7032, 218880]$ \(y^2=x^3-x^2-7032x+218880\)
14400.ck3 14400.ck \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.841664688$ $[0, 0, 0, -21900, -1190000]$ \(y^2=x^3-21900x-1190000\)
14400.cy3 14400.cy \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -21900, 1190000]$ \(y^2=x^3-21900x+1190000\)
17328.d3 17328.d \( 2^{4} \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -8784, -299376]$ \(y^2=x^3-x^2-8784x-299376\)
17424.bu3 17424.bu \( 2^{4} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.495686763$ $[0, 0, 0, -26499, 1583890]$ \(y^2=x^3-26499x+1583890\)
20184.i3 20184.i \( 2^{3} \cdot 3 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -20464, -1081744]$ \(y^2=x^3+x^2-20464x-1081744\)
20808.i3 20808.i \( 2^{3} \cdot 3^{2} \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -63291, 5846470]$ \(y^2=x^3-63291x+5846470\)
23064.i3 23064.i \( 2^{3} \cdot 3 \cdot 31^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -23384, 1305216]$ \(y^2=x^3+x^2-23384x+1305216\)
23232.bo3 23232.bo \( 2^{6} \cdot 3 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.664639104$ $[0, -1, 0, -11777, -465375]$ \(y^2=x^3-x^2-11777x-465375\)
23232.do3 23232.do \( 2^{6} \cdot 3 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.502171706$ $[0, 1, 0, -11777, 465375]$ \(y^2=x^3+x^2-11777x+465375\)
24336.o3 24336.o \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $5.094658422$ $[0, 0, 0, -37011, -2614430]$ \(y^2=x^3-37011x-2614430\)
25392.be3 25392.be \( 2^{4} \cdot 3 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.341410946$ $[0, 1, 0, -12872, -540540]$ \(y^2=x^3+x^2-12872x-540540\)
25992.w3 25992.w \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -79059, -8162210]$ \(y^2=x^3-79059x-8162210\)
28224.et3 28224.et \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -42924, 3265360]$ \(y^2=x^3-42924x+3265360\)
28224.fl3 28224.fl \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.147161621$ $[0, 0, 0, -42924, -3265360]$ \(y^2=x^3-42924x-3265360\)
29400.ce3 29400.ce \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -29808, 1899612]$ \(y^2=x^3-x^2-29808x+1899612\)
32448.n3 32448.n \( 2^{6} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -16449, 780129]$ \(y^2=x^3-x^2-16449x+780129\)
32448.ch3 32448.ch \( 2^{6} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -16449, -780129]$ \(y^2=x^3+x^2-16449x-780129\)
32856.g3 32856.g \( 2^{3} \cdot 3 \cdot 37^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $17.60419173$ $[0, -1, 0, -33312, -2221380]$ \(y^2=x^3-x^2-33312x-2221380\)
38088.g3 38088.g \( 2^{3} \cdot 3^{2} \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.08008802$ $[0, 0, 0, -115851, -14478730]$ \(y^2=x^3-115851x-14478730\)
40344.c3 40344.c \( 2^{3} \cdot 3 \cdot 41^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.164855646$ $[0, 1, 0, -40904, -3051264]$ \(y^2=x^3+x^2-40904x-3051264\)
Next   Download to