Learn more

Refine search


Results (1-50 of 163 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
15.a6 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -5, 2]$ \(y^2+xy+y=x^3+x^2-5x+2\)
45.a6 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -45, -104]$ \(y^2+xy=x^3-x^2-45x-104\)
75.b6 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -126, 523]$ \(y^2+xy+y=x^3-126x+523\)
225.b6 225.b \( 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -1130, -14128]$ \(y^2+xy+y=x^3-x^2-1130x-14128\)
240.d6 240.d \( 2^{4} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -80, -300]$ \(y^2=x^3+x^2-80x-300\)
720.c6 720.c \( 2^{4} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.650156421$ $[0, 0, 0, -723, 7378]$ \(y^2=x^3-723x+7378\)
735.c6 735.c \( 3 \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.378356153$ $[1, 0, 0, -246, -1485]$ \(y^2+xy=x^3-246x-1485\)
960.a6 960.a \( 2^{6} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -321, -2079]$ \(y^2=x^3-x^2-321x-2079\)
960.l6 960.l \( 2^{6} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -321, 2079]$ \(y^2=x^3+x^2-321x+2079\)
1200.e6 1200.e \( 2^{4} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -2008, -33488]$ \(y^2=x^3-x^2-2008x-33488\)
1815.d6 1815.d \( 3 \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.332147913$ $[1, 1, 0, -607, -5936]$ \(y^2+xy=x^3+x^2-607x-5936\)
2205.i6 2205.i \( 3^{2} \cdot 5 \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -2214, 40095]$ \(y^2+xy=x^3-x^2-2214x+40095\)
2535.j6 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.056640051$ $[1, 1, 0, -848, 9027]$ \(y^2+xy=x^3+x^2-848x+9027\)
2880.y6 2880.y \( 2^{6} \cdot 3^{2} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.649098176$ $[0, 0, 0, -2892, -59024]$ \(y^2=x^3-2892x-59024\)
2880.bc6 2880.bc \( 2^{6} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2892, 59024]$ \(y^2=x^3-2892x+59024\)
3600.u6 3600.u \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.200487677$ $[0, 0, 0, -18075, 922250]$ \(y^2=x^3-18075x+922250\)
3675.j6 3675.j \( 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -6150, -185625]$ \(y^2+xy=x^3+x^2-6150x-185625\)
4335.c6 4335.c \( 3 \cdot 5 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -1451, 20856]$ \(y^2+xy=x^3-1451x+20856\)
4800.t6 4800.t \( 2^{6} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.857452901$ $[0, -1, 0, -8033, 275937]$ \(y^2=x^3-x^2-8033x+275937\)
4800.bz6 4800.bz \( 2^{6} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.297783744$ $[0, 1, 0, -8033, -275937]$ \(y^2=x^3+x^2-8033x-275937\)
5415.j6 5415.j \( 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1813, -29437]$ \(y^2+xy+y=x^3-1813x-29437\)
5445.c6 5445.c \( 3^{2} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.169109947$ $[1, -1, 1, -5468, 154806]$ \(y^2+xy+y=x^3-x^2-5468x+154806\)
7605.g6 7605.g \( 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.535218650$ $[1, -1, 1, -7637, -251364]$ \(y^2+xy+y=x^3-x^2-7637x-251364\)
7935.d6 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2656, -53056]$ \(y^2+xy+y=x^3+x^2-2656x-53056\)
9075.g6 9075.g \( 3 \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.775127587$ $[1, 0, 0, -15188, -711633]$ \(y^2+xy=x^3-15188x-711633\)
11025.p6 11025.p \( 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.308958211$ $[1, -1, 1, -55355, 4956522]$ \(y^2+xy+y=x^3-x^2-55355x+4956522\)
11760.p6 11760.p \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.924119001$ $[0, -1, 0, -3936, 95040]$ \(y^2=x^3-x^2-3936x+95040\)
12615.f6 12615.f \( 3 \cdot 5 \cdot 29^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.956646921$ $[1, 0, 1, -4223, 103781]$ \(y^2+xy+y=x^3-4223x+103781\)
12675.n6 12675.n \( 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -21213, 1170792]$ \(y^2+xy=x^3-21213x+1170792\)
13005.p6 13005.p \( 3^{2} \cdot 5 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.170132057$ $[1, -1, 0, -13059, -563112]$ \(y^2+xy=x^3-x^2-13059x-563112\)
14400.cj6 14400.cj \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -72300, -7378000]$ \(y^2=x^3-72300x-7378000\)
14400.cz6 14400.cz \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.518449529$ $[0, 0, 0, -72300, 7378000]$ \(y^2=x^3-72300x+7378000\)
14415.d6 14415.d \( 3 \cdot 5 \cdot 31^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -4825, -127600]$ \(y^2+xy=x^3-4825x-127600\)
16245.c6 16245.c \( 3^{2} \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.055537524$ $[1, -1, 1, -16313, 794792]$ \(y^2+xy+y=x^3-x^2-16313x+794792\)
20535.f6 20535.f \( 3 \cdot 5 \cdot 37^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.165892584$ $[1, 1, 0, -6873, 213408]$ \(y^2+xy=x^3+x^2-6873x+213408\)
21675.s6 21675.s \( 3 \cdot 5^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.545716610$ $[1, 1, 0, -36275, 2607000]$ \(y^2+xy=x^3+x^2-36275x+2607000\)
23805.s6 23805.s \( 3^{2} \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -23904, 1408603]$ \(y^2+xy=x^3-x^2-23904x+1408603\)
25215.f6 25215.f \( 3 \cdot 5 \cdot 41^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.412131868$ $[1, 0, 0, -8440, 293567]$ \(y^2+xy=x^3-8440x+293567\)
27075.f6 27075.f \( 3 \cdot 5^{2} \cdot 19^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $6.857504831$ $[1, 1, 1, -45313, -3679594]$ \(y^2+xy+y=x^3+x^2-45313x-3679594\)
27225.bp6 27225.bp \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.289871438$ $[1, -1, 0, -136692, 19214091]$ \(y^2+xy=x^3-x^2-136692x+19214091\)
27735.k6 27735.k \( 3 \cdot 5 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $12.96328979$ $[1, 0, 1, -9284, -340243]$ \(y^2+xy+y=x^3-9284x-340243\)
29040.df6 29040.df \( 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.248976610$ $[0, 1, 0, -9720, 360468]$ \(y^2=x^3+x^2-9720x+360468\)
33135.d6 33135.d \( 3 \cdot 5 \cdot 47^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -11091, -447912]$ \(y^2+xy+y=x^3+x^2-11091x-447912\)
35280.do6 35280.do \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.215360378$ $[0, 0, 0, -35427, -2530654]$ \(y^2=x^3-35427x-2530654\)
37845.d6 37845.d \( 3^{2} \cdot 5 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -38003, -2802094]$ \(y^2+xy+y=x^3-x^2-38003x-2802094\)
38025.cj6 38025.cj \( 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -190917, -31611384]$ \(y^2+xy=x^3-x^2-190917x-31611384\)
39675.bk6 39675.bk \( 3 \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.15185979$ $[1, 0, 1, -66401, -6499177]$ \(y^2+xy+y=x^3-66401x-6499177\)
40560.bv6 40560.bv \( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.583478477$ $[0, 1, 0, -13576, -604876]$ \(y^2=x^3+x^2-13576x-604876\)
42135.k6 42135.k \( 3 \cdot 5 \cdot 53^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -14104, 634481]$ \(y^2+xy+y=x^3-14104x+634481\)
43245.h6 43245.h \( 3^{2} \cdot 5 \cdot 31^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.931256663$ $[1, -1, 0, -43425, 3445200]$ \(y^2+xy=x^3-x^2-43425x+3445200\)
Next   Download to