Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1960.c1 |
1960a1 |
1960.c |
1960a |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.592313975$ |
$1$ |
|
$2$ |
$3360$ |
$1.225748$ |
$137564/3125$ |
$[0, -1, 0, 1944, -204644]$ |
\(y^2=x^3-x^2+1944x-204644\) |
1960.l1 |
1960e1 |
1960.l |
1960e |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.254357234$ |
$1$ |
|
$6$ |
$480$ |
$0.252792$ |
$137564/3125$ |
$[0, 1, 0, 40, 608]$ |
\(y^2=x^3+x^2+40x+608\) |
3920.q1 |
3920l1 |
3920.q |
3920l |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.356148240$ |
$1$ |
|
$6$ |
$960$ |
$0.252792$ |
$137564/3125$ |
$[0, -1, 0, 40, -608]$ |
\(y^2=x^3-x^2+40x-608\) |
3920.v1 |
3920a1 |
3920.v |
3920a |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.287905843$ |
$1$ |
|
$2$ |
$6720$ |
$1.225748$ |
$137564/3125$ |
$[0, 1, 0, 1944, 204644]$ |
\(y^2=x^3+x^2+1944x+204644\) |
9800.o1 |
9800bc1 |
9800.o |
9800bc |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.696184627$ |
$1$ |
|
$4$ |
$11520$ |
$1.057510$ |
$137564/3125$ |
$[0, -1, 0, 992, 74012]$ |
\(y^2=x^3-x^2+992x+74012\) |
9800.z1 |
9800w1 |
9800.z |
9800w |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$80640$ |
$2.030468$ |
$137564/3125$ |
$[0, 1, 0, 48592, -25483312]$ |
\(y^2=x^3+x^2+48592x-25483312\) |
15680.bg1 |
15680p1 |
15680.bg |
15680p |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{5} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$7680$ |
$0.599366$ |
$137564/3125$ |
$[0, -1, 0, 159, 4705]$ |
\(y^2=x^3-x^2+159x+4705\) |
15680.bn1 |
15680dd1 |
15680.bn |
15680dd |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{5} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.174554288$ |
$1$ |
|
$8$ |
$53760$ |
$1.572321$ |
$137564/3125$ |
$[0, -1, 0, 7775, 1629377]$ |
\(y^2=x^3-x^2+7775x+1629377\) |
15680.ci1 |
15680ce1 |
15680.ci |
15680ce |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{5} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.032990393$ |
$1$ |
|
$2$ |
$7680$ |
$0.599366$ |
$137564/3125$ |
$[0, 1, 0, 159, -4705]$ |
\(y^2=x^3+x^2+159x-4705\) |
15680.cu1 |
15680be1 |
15680.cu |
15680be |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{5} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$53760$ |
$1.572321$ |
$137564/3125$ |
$[0, 1, 0, 7775, -1629377]$ |
\(y^2=x^3+x^2+7775x-1629377\) |
17640.y1 |
17640cd1 |
17640.y |
17640cd |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{5} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$14400$ |
$0.802098$ |
$137564/3125$ |
$[0, 0, 0, 357, -16058]$ |
\(y^2=x^3+357x-16058\) |
17640.cn1 |
17640cl1 |
17640.cn |
17640cl |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{5} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$100800$ |
$1.775053$ |
$137564/3125$ |
$[0, 0, 0, 17493, 5507894]$ |
\(y^2=x^3+17493x+5507894\) |
19600.bn1 |
19600b1 |
19600.bn |
19600b |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{11} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.959957907$ |
$1$ |
|
$2$ |
$161280$ |
$2.030468$ |
$137564/3125$ |
$[0, -1, 0, 48592, 25483312]$ |
\(y^2=x^3-x^2+48592x+25483312\) |
19600.cw1 |
19600j1 |
19600.cw |
19600j |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{11} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$23040$ |
$1.057510$ |
$137564/3125$ |
$[0, 1, 0, 992, -74012]$ |
\(y^2=x^3+x^2+992x-74012\) |
35280.s1 |
35280bj1 |
35280.s |
35280bj |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{5} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.066919056$ |
$1$ |
|
$2$ |
$28800$ |
$0.802098$ |
$137564/3125$ |
$[0, 0, 0, 357, 16058]$ |
\(y^2=x^3+357x+16058\) |
35280.ed1 |
35280ca1 |
35280.ed |
35280ca |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{5} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.077184810$ |
$1$ |
|
$4$ |
$201600$ |
$1.775053$ |
$137564/3125$ |
$[0, 0, 0, 17493, -5507894]$ |
\(y^2=x^3+17493x-5507894\) |
78400.dj1 |
78400hv1 |
78400.dj |
78400hv |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.610877018$ |
$1$ |
|
$4$ |
$184320$ |
$1.404085$ |
$137564/3125$ |
$[0, -1, 0, 3967, -596063]$ |
\(y^2=x^3-x^2+3967x-596063\) |
78400.ea1 |
78400f1 |
78400.ea |
78400f |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{11} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.881333556$ |
$1$ |
|
$2$ |
$1290240$ |
$2.377041$ |
$137564/3125$ |
$[0, -1, 0, 194367, -204060863]$ |
\(y^2=x^3-x^2+194367x-204060863\) |
78400.hq1 |
78400ga1 |
78400.hq |
78400ga |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1290240$ |
$2.377041$ |
$137564/3125$ |
$[0, 1, 0, 194367, 204060863]$ |
\(y^2=x^3+x^2+194367x+204060863\) |
78400.id1 |
78400bc1 |
78400.id |
78400bc |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{11} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$184320$ |
$1.404085$ |
$137564/3125$ |
$[0, 1, 0, 3967, 596063]$ |
\(y^2=x^3+x^2+3967x+596063\) |
88200.fv1 |
88200bh1 |
88200.fv |
88200bh |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2419200$ |
$2.579773$ |
$137564/3125$ |
$[0, 0, 0, 437325, 688486750]$ |
\(y^2=x^3+437325x+688486750\) |
88200.gq1 |
88200cg1 |
88200.gq |
88200cg |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$8.185871622$ |
$1$ |
|
$0$ |
$345600$ |
$1.606817$ |
$137564/3125$ |
$[0, 0, 0, 8925, -2007250]$ |
\(y^2=x^3+8925x-2007250\) |
141120.cd1 |
141120ne1 |
141120.cd |
141120ne |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{5} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1612800$ |
$2.121628$ |
$137564/3125$ |
$[0, 0, 0, 69972, 44063152]$ |
\(y^2=x^3+69972x+44063152\) |
141120.ez1 |
141120fj1 |
141120.ez |
141120fj |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{5} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.193390638$ |
$1$ |
|
$2$ |
$1612800$ |
$2.121628$ |
$137564/3125$ |
$[0, 0, 0, 69972, -44063152]$ |
\(y^2=x^3+69972x-44063152\) |
141120.kz1 |
141120iv1 |
141120.kz |
141120iv |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{5} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$230400$ |
$1.148672$ |
$137564/3125$ |
$[0, 0, 0, 1428, -128464]$ |
\(y^2=x^3+1428x-128464\) |
141120.oc1 |
141120bw1 |
141120.oc |
141120bw |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{5} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.772113441$ |
$1$ |
|
$4$ |
$230400$ |
$1.148672$ |
$137564/3125$ |
$[0, 0, 0, 1428, 128464]$ |
\(y^2=x^3+1428x+128464\) |
176400.ev1 |
176400qv1 |
176400.ev |
176400qv |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$4838400$ |
$2.579773$ |
$137564/3125$ |
$[0, 0, 0, 437325, -688486750]$ |
\(y^2=x^3+437325x-688486750\) |
176400.gn1 |
176400on1 |
176400.gn |
176400on |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5.668707690$ |
$1$ |
|
$0$ |
$691200$ |
$1.606817$ |
$137564/3125$ |
$[0, 0, 0, 8925, 2007250]$ |
\(y^2=x^3+8925x+2007250\) |
237160.k1 |
237160k1 |
237160.k |
237160k |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.936310822$ |
$1$ |
|
$2$ |
$4704000$ |
$2.424694$ |
$137564/3125$ |
$[0, -1, 0, 235184, 271440380]$ |
\(y^2=x^3-x^2+235184x+271440380\) |
237160.cf1 |
237160cf1 |
237160.cf |
237160cf |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.089716595$ |
$1$ |
|
$0$ |
$672000$ |
$1.451740$ |
$137564/3125$ |
$[0, 1, 0, 4800, -790000]$ |
\(y^2=x^3+x^2+4800x-790000\) |
331240.y1 |
331240y1 |
331240.y |
331240y |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.192048913$ |
$1$ |
|
$6$ |
$7257600$ |
$2.508221$ |
$137564/3125$ |
$[0, -1, 0, 328480, -448288868]$ |
\(y^2=x^3-x^2+328480x-448288868\) |
331240.br1 |
331240br1 |
331240.br |
331240br |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5.938615143$ |
$1$ |
|
$0$ |
$1036800$ |
$1.535267$ |
$137564/3125$ |
$[0, 1, 0, 6704, 1308880]$ |
\(y^2=x^3+x^2+6704x+1308880\) |
474320.ds1 |
474320ds1 |
474320.ds |
474320ds |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{2} \cdot 11^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.789744691$ |
$1$ |
|
$10$ |
$1344000$ |
$1.451740$ |
$137564/3125$ |
$[0, -1, 0, 4800, 790000]$ |
\(y^2=x^3-x^2+4800x+790000\) |
474320.ge1 |
474320ge1 |
474320.ge |
474320ge |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{8} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$9408000$ |
$2.424694$ |
$137564/3125$ |
$[0, 1, 0, 235184, -271440380]$ |
\(y^2=x^3+x^2+235184x-271440380\) |
705600.na1 |
- |
705600.na |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5.694860064$ |
$1$ |
|
$0$ |
$5529600$ |
$1.953390$ |
$137564/3125$ |
$[0, 0, 0, 35700, -16058000]$ |
\(y^2=x^3+35700x-16058000\) |
705600.sf1 |
- |
705600.sf |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$38707200$ |
$2.926346$ |
$137564/3125$ |
$[0, 0, 0, 1749300, 5507894000]$ |
\(y^2=x^3+1749300x+5507894000\) |
705600.bkr1 |
- |
705600.bkr |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{11} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.407064906$ |
$1$ |
|
$4$ |
$5529600$ |
$1.953390$ |
$137564/3125$ |
$[0, 0, 0, 35700, 16058000]$ |
\(y^2=x^3+35700x+16058000\) |
705600.bpw1 |
- |
705600.bpw |
- |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{11} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$21.58941255$ |
$1$ |
|
$0$ |
$38707200$ |
$2.926346$ |
$137564/3125$ |
$[0, 0, 0, 1749300, -5507894000]$ |
\(y^2=x^3+1749300x-5507894000\) |