Learn more

Refine search


Results (1-50 of 161 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
14.a4 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -11, 12]$ \(y^2+xy+y=x^3-11x+12\)
98.a4 98.a \( 2 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -515, -4717]$ \(y^2+xy=x^3+x^2-515x-4717\)
112.c4 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -168, -784]$ \(y^2=x^3-x^2-168x-784\)
126.b4 126.b \( 2 \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -95, -331]$ \(y^2+xy+y=x^3-x^2-95x-331\)
350.f4 350.f \( 2 \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -263, 1531]$ \(y^2+xy+y=x^3+x^2-263x+1531\)
448.a4 448.a \( 2^{6} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -673, -6945]$ \(y^2=x^3+x^2-673x-6945\)
448.g4 448.g \( 2^{6} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -673, 6945]$ \(y^2=x^3-x^2-673x+6945\)
784.b4 784.b \( 2^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.779379370$ $[0, 1, 0, -8248, 285396]$ \(y^2=x^3+x^2-8248x+285396\)
882.i4 882.i \( 2 \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4640, 122721]$ \(y^2+xy+y=x^3-x^2-4640x+122721\)
1008.h4 1008.h \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.350778087$ $[0, 0, 0, -1515, 22682]$ \(y^2=x^3-1515x+22682\)
1694.e4 1694.e \( 2 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.787738810$ $[1, 0, 0, -1273, -17577]$ \(y^2+xy=x^3-1273x-17577\)
2366.j4 2366.j \( 2 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1778, 28690]$ \(y^2+xy=x^3-1778x+28690\)
2450.t4 2450.t \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.752497591$ $[1, 0, 0, -12888, -563858]$ \(y^2+xy=x^3-12888x-563858\)
2800.g4 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.027270605$ $[0, 1, 0, -4208, -106412]$ \(y^2=x^3+x^2-4208x-106412\)
3136.e4 3136.e \( 2^{6} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -32993, -2316161]$ \(y^2=x^3+x^2-32993x-2316161\)
3136.z4 3136.z \( 2^{6} \cdot 7^{2} \) $1$ $\Z/2\Z$ $2.806780150$ $[0, -1, 0, -32993, 2316161]$ \(y^2=x^3-x^2-32993x+2316161\)
3150.i4 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2367, -43709]$ \(y^2+xy=x^3-x^2-2367x-43709\)
4032.r4 4032.r \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.738677589$ $[0, 0, 0, -6060, 181456]$ \(y^2=x^3-6060x+181456\)
4032.w4 4032.w \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.742029896$ $[0, 0, 0, -6060, -181456]$ \(y^2=x^3-6060x-181456\)
4046.f4 4046.f \( 2 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.233993746$ $[1, 1, 0, -3040, 63222]$ \(y^2+xy=x^3+x^2-3040x+63222\)
5054.c4 5054.c \( 2 \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -3798, -91615]$ \(y^2+xy+y=x^3+x^2-3798x-91615\)
7056.bd4 7056.bd \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -74235, -7779926]$ \(y^2=x^3-74235x-7779926\)
7406.a4 7406.a \( 2 \cdot 7 \cdot 23^{2} \) $2$ $\Z/2\Z$ $2.790171969$ $[1, 0, 1, -5566, -160170]$ \(y^2+xy+y=x^3-5566x-160170\)
11200.k4 11200.k \( 2^{6} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.665631884$ $[0, 1, 0, -16833, 834463]$ \(y^2=x^3+x^2-16833x+834463\)
11200.cz4 11200.cz \( 2^{6} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.809202424$ $[0, -1, 0, -16833, -834463]$ \(y^2=x^3-x^2-16833x-834463\)
11774.m4 11774.m \( 2 \cdot 7 \cdot 29^{2} \) $1$ $\Z/2\Z$ $8.535317637$ $[1, 1, 1, -8848, 316447]$ \(y^2+xy+y=x^3+x^2-8848x+316447\)
11858.bm4 11858.bm \( 2 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -62378, 5966533]$ \(y^2+xy+y=x^3+x^2-62378x+5966533\)
13454.d4 13454.d \( 2 \cdot 7 \cdot 31^{2} \) $1$ $\Z/2\Z$ $5.480538865$ $[1, 1, 0, -10110, -395254]$ \(y^2+xy=x^3+x^2-10110x-395254\)
13552.w4 13552.w \( 2^{4} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -20368, 1124928]$ \(y^2=x^3-x^2-20368x+1124928\)
15246.m4 15246.m \( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.748543891$ $[1, -1, 0, -11457, 474579]$ \(y^2+xy=x^3-x^2-11457x+474579\)
16562.bv4 16562.bv \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $18.45818670$ $[1, 1, 1, -87123, -9927793]$ \(y^2+xy+y=x^3+x^2-87123x-9927793\)
18928.bb4 18928.bb \( 2^{4} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.202750861$ $[0, -1, 0, -28448, -1836160]$ \(y^2=x^3-x^2-28448x-1836160\)
19166.a4 19166.a \( 2 \cdot 7 \cdot 37^{2} \) $1$ $\Z/2\Z$ $5.634139170$ $[1, 0, 0, -14403, 663679]$ \(y^2+xy=x^3-14403x+663679\)
19600.dl4 19600.dl \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.799389572$ $[0, -1, 0, -206208, 36086912]$ \(y^2=x^3-x^2-206208x+36086912\)
21294.q4 21294.q \( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -16002, -774630]$ \(y^2+xy=x^3-x^2-16002x-774630\)
22050.ba4 22050.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.451442818$ $[1, -1, 0, -115992, 15224166]$ \(y^2+xy=x^3-x^2-115992x+15224166\)
23534.o4 23534.o \( 2 \cdot 7 \cdot 41^{2} \) $1$ $\Z/2\Z$ $2.853220838$ $[1, 1, 0, -17685, 897299]$ \(y^2+xy=x^3+x^2-17685x+897299\)
25200.eu4 25200.eu \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -37875, 2835250]$ \(y^2=x^3-37875x+2835250\)
25886.d4 25886.d \( 2 \cdot 7 \cdot 43^{2} \) $1$ $\Z/2\Z$ $27.49722773$ $[1, 1, 1, -19453, -1051727]$ \(y^2+xy+y=x^3+x^2-19453x-1051727\)
28224.dg4 28224.dg \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -296940, -62239408]$ \(y^2=x^3-296940x-62239408\)
28224.dh4 28224.dh \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.461288329$ $[0, 0, 0, -296940, 62239408]$ \(y^2=x^3-296940x+62239408\)
28322.c4 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -148986, -22132078]$ \(y^2+xy+y=x^3-148986x-22132078\)
30926.a4 30926.a \( 2 \cdot 7 \cdot 47^{2} \) $1$ $\Z/2\Z$ $3.987978253$ $[1, 0, 1, -23241, -1364734]$ \(y^2+xy+y=x^3-23241x-1364734\)
32368.f4 32368.f \( 2^{4} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.531962613$ $[0, 1, 0, -48648, -4143500]$ \(y^2=x^3+x^2-48648x-4143500\)
35378.k4 35378.k \( 2 \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -186103, 30865575]$ \(y^2+xy=x^3-186103x+30865575\)
36414.cg4 36414.cg \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.495633926$ $[1, -1, 1, -27365, -1734357]$ \(y^2+xy+y=x^3-x^2-27365x-1734357\)
39326.m4 39326.m \( 2 \cdot 7 \cdot 53^{2} \) $1$ $\Z/2\Z$ $15.98792974$ $[1, 1, 1, -29553, 1941869]$ \(y^2+xy+y=x^3+x^2-29553x+1941869\)
40432.b4 40432.b \( 2^{4} \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.439566589$ $[0, 1, 0, -60768, 5741812]$ \(y^2=x^3+x^2-60768x+5741812\)
42350.bl4 42350.bl \( 2 \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $8.954233918$ $[1, 1, 0, -31825, -2197125]$ \(y^2+xy=x^3+x^2-31825x-2197125\)
45486.m4 45486.m \( 2 \cdot 3^{2} \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -34182, 2439418]$ \(y^2+xy=x^3-x^2-34182x+2439418\)
Next   Download to