| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 46410.ck1 |
46410cn8 |
46410.ck |
46410cn |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3 \cdot 5 \cdot 7^{16} \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.149 |
2B |
$742560$ |
$768$ |
$13$ |
$1$ |
$64$ |
$2$ |
$0$ |
$25165824$ |
$3.819359$ |
$1274090022584975661628188489514561/14072533302105480763470$ |
$1.02638$ |
$7.09406$ |
$[1, 0, 0, -2258527940, -41313148043070]$ |
\(y^2+xy=x^3-2258527940x-41313148043070\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.2.3, 16.96.0-16.v.2.5, 120.96.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 139230.j1 |
139230dy7 |
139230.j |
139230dy |
$8$ |
$16$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3^{7} \cdot 5 \cdot 7^{16} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.122 |
2B |
$742560$ |
$768$ |
$13$ |
$11.78362007$ |
$1$ |
|
$0$ |
$201326592$ |
$4.368668$ |
$1274090022584975661628188489514561/14072533302105480763470$ |
$1.02638$ |
$6.99257$ |
$[1, -1, 0, -20326751460, 1115454997162890]$ |
\(y^2+xy=x^3-x^2-20326751460x+1115454997162890\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.1, 16.48.0.v.2, $\ldots$ |
$[(2959569/5, 2391103593/5)]$ |
$1$ |
| 232050.bf1 |
232050bf8 |
232050.bf |
232050bf |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3 \cdot 5^{7} \cdot 7^{16} \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.122 |
2B |
$742560$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$603979776$ |
$4.624077$ |
$1274090022584975661628188489514561/14072533302105480763470$ |
$1.02638$ |
$6.95153$ |
$[1, 1, 0, -56463198500, -5164143505383750]$ |
\(y^2+xy=x^3+x^2-56463198500x-5164143505383750\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.v.2, 20.12.0-4.c.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 324870.dd1 |
324870dd7 |
324870.dd |
324870dd |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 2 \cdot 3 \cdot 5 \cdot 7^{22} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.122 |
2B |
$742560$ |
$768$ |
$13$ |
$56.08582067$ |
$1$ |
|
$0$ |
$1207959552$ |
$4.792313$ |
$1274090022584975661628188489514561/14072533302105480763470$ |
$1.02638$ |
$6.92631$ |
$[1, 1, 1, -110667869061, 14170299110903949]$ |
\(y^2+xy+y=x^3+x^2-110667869061x+14170299110903949\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.v.2, 28.12.0-4.c.1.1, $\ldots$ |
$[(2761355648917042357490643/2017367858, 4114160285596218055922428908121752937/2017367858)]$ |
$1$ |
| 371280.cy1 |
371280cy7 |
371280.cy |
371280cy |
$8$ |
$16$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{13} \cdot 3 \cdot 5 \cdot 7^{16} \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.105 |
2B |
$742560$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$3$ |
$603979776$ |
$4.512505$ |
$1274090022584975661628188489514561/14072533302105480763470$ |
$1.02638$ |
$6.59237$ |
$[0, -1, 0, -36136447040, 2644041474756480]$ |
\(y^2=x^3-x^2-36136447040x+2644041474756480\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.2.4, 16.96.0-16.v.2.7, 120.96.0.?, $\ldots$ |
$[ ]$ |
$1$ |