Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
762.f1 |
762g2 |
762.f |
762g |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.5 |
7B.1.3 |
$7112$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$25872$ |
$2.686474$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$9.40063$ |
$[1, 0, 0, -22361106, -40701264948]$ |
\(y^2+xy=x^3-22361106x-40701264948\) |
7.48.0-7.a.2.2, 1016.2.0.?, 7112.96.2.? |
$[]$ |
2286.f1 |
2286f2 |
2286.f |
2286f |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{8} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$21336$ |
$96$ |
$2$ |
$1.150157925$ |
$1$ |
|
$0$ |
$206976$ |
$3.235779$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$8.91761$ |
$[1, -1, 0, -201249954, 1098934153596]$ |
\(y^2+xy=x^3-x^2-201249954x+1098934153596\) |
7.24.0.a.2, 21.48.0-7.a.2.2, 1016.2.0.?, 7112.48.2.?, 21336.96.2.? |
$[(192891/5, 8735496/5)]$ |
6096.d1 |
6096f2 |
6096.d |
6096f |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 127 \) |
\( 2^{15} \cdot 3^{2} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$7112$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$620928$ |
$3.379620$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$8.11207$ |
$[0, -1, 0, -357777696, 2604880956672]$ |
\(y^2=x^3-x^2-357777696x+2604880956672\) |
7.24.0.a.2, 28.48.0-7.a.2.1, 1016.2.0.?, 7112.96.2.? |
$[]$ |
18288.s1 |
18288v2 |
18288.s |
18288v |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 127 \) |
\( 2^{15} \cdot 3^{8} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$21336$ |
$96$ |
$2$ |
$36.20203506$ |
$1$ |
|
$0$ |
$4967424$ |
$3.928928$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.87564$ |
$[0, 0, 0, -3219999267, -70328565830878]$ |
\(y^2=x^3-3219999267x-70328565830878\) |
7.24.0.a.2, 84.48.0.?, 1016.2.0.?, 7112.48.2.?, 21336.96.2.? |
$[(-3760184105237959559/10712779, 1287270738749686372499376/10712779)]$ |
19050.c1 |
19050b2 |
19050.c |
19050b |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{6} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$35560$ |
$96$ |
$2$ |
$53.43504968$ |
$1$ |
|
$0$ |
$3622080$ |
$3.491192$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.31000$ |
$[1, 1, 0, -559027650, -5087658118500]$ |
\(y^2+xy=x^3+x^2-559027650x-5087658118500\) |
7.24.0.a.2, 35.48.0-7.a.2.1, 1016.2.0.?, 7112.48.2.?, 35560.96.2.? |
$[(-9839146501858788397605681/26848515991, 135157294989940278865479211419287325/26848515991)]$ |
24384.n1 |
24384j2 |
24384.n |
24384j |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 127 \) |
\( 2^{21} \cdot 3^{2} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$7112$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$4967424$ |
$3.726196$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.41052$ |
$[0, -1, 0, -1431110785, -20837616542591]$ |
\(y^2=x^3-x^2-1431110785x-20837616542591\) |
7.24.0.a.2, 56.48.0-7.a.2.1, 1016.2.0.?, 3556.48.0.?, 7112.96.2.? |
$[]$ |
24384.bj1 |
24384bi2 |
24384.bj |
24384bi |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 127 \) |
\( 2^{21} \cdot 3^{2} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$7112$ |
$96$ |
$2$ |
$18.89964979$ |
$1$ |
|
$0$ |
$4967424$ |
$3.726196$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.41052$ |
$[0, 1, 0, -1431110785, 20837616542591]$ |
\(y^2=x^3+x^2-1431110785x+20837616542591\) |
7.24.0.a.2, 56.48.0-7.a.2.2, 1016.2.0.?, 1778.48.0.?, 7112.96.2.? |
$[(4321144265/451, 13939986955296/451)]$ |
37338.n1 |
37338q2 |
37338.n |
37338q |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 7^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.2 |
7B.1.4 |
$7112$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$9779616$ |
$3.659428$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.03450$ |
$[1, 1, 1, -1095694195, 13959438182969]$ |
\(y^2+xy+y=x^3+x^2-1095694195x+13959438182969\) |
7.48.0-7.a.2.1, 1016.2.0.?, 7112.96.2.? |
$[]$ |
57150.bi1 |
57150bl2 |
57150.bi |
57150bl |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{8} \cdot 5^{6} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$106680$ |
$96$ |
$2$ |
$19.70024826$ |
$1$ |
|
$0$ |
$28976640$ |
$4.040497$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.17861$ |
$[1, -1, 1, -5031248855, 137361737950647]$ |
\(y^2+xy+y=x^3-x^2-5031248855x+137361737950647\) |
7.24.0.a.2, 105.48.0.?, 1016.2.0.?, 7112.48.2.?, 106680.96.2.? |
$[(41471073905/1007, -961734671232/1007)]$ |
73152.bf1 |
73152cp2 |
73152.bf |
73152cp |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 127 \) |
\( 2^{21} \cdot 3^{8} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$21336$ |
$96$ |
$2$ |
$40.95686356$ |
$1$ |
|
$0$ |
$39739392$ |
$4.275497$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.27217$ |
$[0, 0, 0, -12879997068, -562628526647024]$ |
\(y^2=x^3-12879997068x-562628526647024\) |
7.24.0.a.2, 168.48.0.?, 1016.2.0.?, 5334.48.0.?, 7112.48.2.?, $\ldots$ |
$[(-291095443555229390654/66657225, 280901778756971498372366144/66657225)]$ |
73152.bm1 |
73152bn2 |
73152.bm |
73152bn |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 127 \) |
\( 2^{21} \cdot 3^{8} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$21336$ |
$96$ |
$2$ |
$4.649046289$ |
$1$ |
|
$0$ |
$39739392$ |
$4.275497$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.27217$ |
$[0, 0, 0, -12879997068, 562628526647024]$ |
\(y^2=x^3-12879997068x+562628526647024\) |
7.24.0.a.2, 168.48.0.?, 1016.2.0.?, 7112.48.2.?, 10668.48.0.?, $\ldots$ |
$[(3157981/7, 163015803/7)]$ |
92202.k1 |
92202l2 |
92202.k |
92202l |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 11^{6} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$78232$ |
$96$ |
$2$ |
$32.62282392$ |
$1$ |
|
$0$ |
$30787680$ |
$3.885422$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.71547$ |
$[1, 0, 1, -2705693829, 54170677951960]$ |
\(y^2+xy+y=x^3-2705693829x+54170677951960\) |
7.24.0.a.2, 77.48.0.?, 1016.2.0.?, 7112.48.2.?, 78232.96.2.? |
$[(439634326766186/138535, 5425651888435793422386/138535)]$ |
96774.h1 |
96774h2 |
96774.h |
96774h |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 127^{2} \) |
\( 2^{3} \cdot 3^{2} \cdot 127^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$7112$ |
$96$ |
$2$ |
$17.06957129$ |
$1$ |
|
$0$ |
$417263616$ |
$5.108566$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.96569$ |
$[1, 1, 1, -360662279010, 83367811912911159]$ |
\(y^2+xy+y=x^3+x^2-360662279010x+83367811912911159\) |
7.24.0.a.2, 56.48.0-7.a.2.6, 889.48.0.?, 1016.2.0.?, 7112.96.2.? |
$[(-15448742673341/8239, 219296703224578556807/8239)]$ |
112014.e1 |
112014l2 |
112014.e |
112014l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{8} \cdot 7^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$21336$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$78236928$ |
$4.208733$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.93675$ |
$[1, -1, 0, -9861247755, -376914692187923]$ |
\(y^2+xy=x^3-x^2-9861247755x-376914692187923\) |
7.24.0.a.2, 21.48.0-7.a.2.1, 1016.2.0.?, 7112.48.2.?, 21336.96.2.? |
$[]$ |
128778.k1 |
128778m2 |
128778.k |
128778m |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 13^{6} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$92456$ |
$96$ |
$2$ |
$10.01442218$ |
$1$ |
|
$0$ |
$60850944$ |
$3.968948$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.60996$ |
$[1, 0, 1, -3779026918, -89416900063840]$ |
\(y^2+xy+y=x^3-3779026918x-89416900063840\) |
7.24.0.a.2, 91.48.0.?, 1016.2.0.?, 7112.48.2.?, 92456.96.2.? |
$[(-10257816/17, 93945008/17)]$ |
152400.bw1 |
152400x2 |
152400.bw |
152400x |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 127 \) |
\( 2^{15} \cdot 3^{2} \cdot 5^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$35560$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$86929920$ |
$4.184341$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.73326$ |
$[0, 1, 0, -8944442408, 325592230699188]$ |
\(y^2=x^3+x^2-8944442408x+325592230699188\) |
7.24.0.a.2, 140.48.0.?, 1016.2.0.?, 7112.48.2.?, 35560.96.2.? |
$[]$ |
220218.t1 |
220218p2 |
220218.t |
220218p |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 17^{6} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$120904$ |
$96$ |
$2$ |
$11.29971291$ |
$1$ |
|
$0$ |
$130394880$ |
$4.103081$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.45253$ |
$[1, 1, 1, -6462359640, -199958852329887]$ |
\(y^2+xy+y=x^3+x^2-6462359640x-199958852329887\) |
7.24.0.a.2, 119.48.0.?, 1016.2.0.?, 7112.48.2.?, 120904.96.2.? |
$[(-7844717/13, 53296049/13)]$ |
275082.c1 |
275082c2 |
275082.c |
275082c |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 19^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 19^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$135128$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$185812704$ |
$4.158691$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.39121$ |
$[1, 1, 0, -8072359273, 279153831559789]$ |
\(y^2+xy=x^3+x^2-8072359273x+279153831559789\) |
7.24.0.a.2, 133.48.0.?, 1016.2.0.?, 7112.48.2.?, 135128.96.2.? |
$[]$ |
276606.bo1 |
276606bo2 |
276606.bo |
276606bo |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{8} \cdot 11^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$234696$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$246301440$ |
$4.434731$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.65274$ |
$[1, -1, 1, -24351244457, -1462608304702927]$ |
\(y^2+xy+y=x^3-x^2-24351244457x-1462608304702927\) |
7.24.0.a.2, 231.48.0.?, 1016.2.0.?, 7112.48.2.?, 234696.96.2.? |
$[]$ |
290322.g1 |
290322g2 |
290322.g |
290322g |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 127^{2} \) |
\( 2^{3} \cdot 3^{8} \cdot 127^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$21336$ |
$96$ |
$2$ |
$116.0629474$ |
$1$ |
|
$0$ |
$3338108928$ |
$5.657875$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$7.79401$ |
$[1, -1, 0, -3245960511090, -2250934167609112388]$ |
\(y^2+xy=x^3-x^2-3245960511090x-2250934167609112388\) |
7.24.0.a.2, 168.48.0.?, 1016.2.0.?, 2667.48.0.?, 7112.48.2.?, $\ldots$ |
$[(-16441056479992707849756334614090019603317130260958789733419/125726549183655046173403285, 644991126051420087490110134747747128980761688242805147811747976728243981361200084349/125726549183655046173403285)]$ |
298704.bq1 |
298704bq2 |
298704.bq |
298704bq |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 127 \) |
\( 2^{15} \cdot 3^{2} \cdot 7^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$7112$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$234710784$ |
$4.352577$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.53399$ |
$[0, 1, 0, -17531107120, -893439105924268]$ |
\(y^2=x^3+x^2-17531107120x-893439105924268\) |
7.24.0.a.2, 28.48.0-7.a.2.2, 1016.2.0.?, 7112.96.2.? |
$[]$ |
386334.bm1 |
386334bm2 |
386334.bm |
386334bm |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{8} \cdot 13^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$277368$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$486807552$ |
$4.518257$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.55787$ |
$[1, -1, 1, -34011242258, 2414256301723673]$ |
\(y^2+xy+y=x^3-x^2-34011242258x+2414256301723673\) |
7.24.0.a.2, 273.48.0.?, 1016.2.0.?, 7112.48.2.?, 277368.96.2.? |
$[]$ |
403098.y1 |
403098y2 |
403098.y |
403098y |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 23^{2} \cdot 127 \) |
\( 2^{3} \cdot 3^{2} \cdot 23^{6} \cdot 127^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$163576$ |
$96$ |
$2$ |
$7.064446448$ |
$1$ |
|
$2$ |
$322727328$ |
$4.254219$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.29081$ |
$[1, 0, 0, -11829025085, 495188632572153]$ |
\(y^2+xy=x^3-11829025085x+495188632572153\) |
7.24.0.a.2, 161.48.0.?, 1016.2.0.?, 7112.48.2.?, 163576.96.2.? |
$[(62608, 48997)]$ |
457200.dt1 |
457200dt2 |
457200.dt |
457200dt |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 127 \) |
\( 2^{15} \cdot 3^{8} \cdot 5^{6} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$106680$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$695439360$ |
$4.733643$ |
$1236526859255318155975783969/38367061931916216$ |
$1.06416$ |
$6.67145$ |
$[0, 0, 0, -80499981675, -8791070728859750]$ |
\(y^2=x^3-80499981675x-8791070728859750\) |
7.24.0.a.2, 420.48.0.?, 1016.2.0.?, 7112.48.2.?, 106680.96.2.? |
$[]$ |