| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 39.a4 |
39a4 |
39.a |
39a |
$4$ |
$4$ |
\( 3 \cdot 13 \) |
\( - 3 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4$ |
$-1.011513$ |
$12167/39$ |
$0.85844$ |
$2.98048$ |
$[1, 1, 0, 1, 0]$ |
\(y^2+xy=x^3+x^2+x\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.4, $\ldots$ |
$[ ]$ |
$2$ |
| 117.a4 |
117a1 |
117.a |
117a |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \) |
\( - 3^{7} \cdot 13 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1.130335626$ |
$1$ |
|
$11$ |
$8$ |
$-0.462207$ |
$12167/39$ |
$0.85844$ |
$3.67707$ |
$[1, -1, 1, 4, 6]$ |
\(y^2+xy+y=x^3-x^2+4x+6\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.ba.1.8, 78.6.0.?, 104.24.0.?, $\ldots$ |
$[(0, 2)]$ |
$1$ |
| 507.a4 |
507c1 |
507.a |
507c |
$4$ |
$4$ |
\( 3 \cdot 13^{2} \) |
\( - 3 \cdot 13^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$5.069374873$ |
$1$ |
|
$3$ |
$168$ |
$0.270961$ |
$12167/39$ |
$0.85844$ |
$4.22394$ |
$[1, 1, 1, 81, -564]$ |
\(y^2+xy+y=x^3+x^2+81x-564\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.ba.1.9, 78.6.0.?, 104.24.0.?, $\ldots$ |
$[(94/3, 913/3)]$ |
$1$ |
| 624.i4 |
624h1 |
624.i |
624h |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 13 \) |
\( - 2^{12} \cdot 3 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$-0.318367$ |
$12167/39$ |
$0.85844$ |
$2.98889$ |
$[0, 1, 0, 8, 20]$ |
\(y^2=x^3+x^2+8x+20\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.1, 24.24.0-24.ba.1.12, $\ldots$ |
$[ ]$ |
$1$ |
| 975.f4 |
975g1 |
975.f |
975g |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13 \) |
\( - 3 \cdot 5^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$128$ |
$-0.206795$ |
$12167/39$ |
$0.85844$ |
$2.98961$ |
$[1, 0, 0, 12, -33]$ |
\(y^2+xy=x^3+12x-33\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.5, 60.12.0-4.c.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 1521.e4 |
1521d1 |
1521.e |
1521d |
$4$ |
$4$ |
\( 3^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.14 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1344$ |
$0.820267$ |
$12167/39$ |
$0.85844$ |
$4.49024$ |
$[1, -1, 0, 729, 15952]$ |
\(y^2+xy=x^3-x^2+729x+15952\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.13, $\ldots$ |
$[ ]$ |
$1$ |
| 1872.h4 |
1872q1 |
1872.h |
1872q |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$0.230940$ |
$12167/39$ |
$0.85844$ |
$3.42793$ |
$[0, 0, 0, 69, -470]$ |
\(y^2=x^3+69x-470\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.ba.1.16, 78.6.0.?, 104.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 1911.f4 |
1911f1 |
1911.f |
1911f |
$4$ |
$4$ |
\( 3 \cdot 7^{2} \cdot 13 \) |
\( - 3 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$4.425746569$ |
$1$ |
|
$1$ |
$288$ |
$-0.038559$ |
$12167/39$ |
$0.85844$ |
$2.99053$ |
$[1, 0, 1, 23, 95]$ |
\(y^2+xy+y=x^3+23x+95\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 56.12.0-4.c.1.5, 78.6.0.?, $\ldots$ |
$[(37/3, 371/3)]$ |
$1$ |
| 2496.e4 |
2496t1 |
2496.e |
2496t |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 13 \) |
\( - 2^{18} \cdot 3 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$0.028207$ |
$12167/39$ |
$0.85844$ |
$2.99086$ |
$[0, -1, 0, 31, 129]$ |
\(y^2=x^3-x^2+31x+129\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 24.24.0-24.ba.1.2, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 2496.q4 |
2496k1 |
2496.q |
2496k |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 13 \) |
\( - 2^{18} \cdot 3 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$0.028207$ |
$12167/39$ |
$0.85844$ |
$2.99086$ |
$[0, 1, 0, 31, -129]$ |
\(y^2=x^3+x^2+31x-129\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 24.24.0-24.ba.1.10, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 2925.p4 |
2925f1 |
2925.p |
2925f |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 3^{7} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1024$ |
$0.342512$ |
$12167/39$ |
$0.85844$ |
$3.40400$ |
$[1, -1, 0, 108, 891]$ |
\(y^2+xy=x^3-x^2+108x+891\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.ba.1, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 4719.c4 |
4719d1 |
4719.c |
4719d |
$4$ |
$4$ |
\( 3 \cdot 11^{2} \cdot 13 \) |
\( - 3 \cdot 11^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3432$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1280$ |
$0.187434$ |
$12167/39$ |
$0.85844$ |
$2.99155$ |
$[1, 1, 1, 58, 386]$ |
\(y^2+xy+y=x^3+x^2+58x+386\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 88.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 5733.e4 |
5733g1 |
5733.e |
5733g |
$4$ |
$4$ |
\( 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{7} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$3.777156200$ |
$1$ |
|
$3$ |
$2304$ |
$0.510748$ |
$12167/39$ |
$0.85844$ |
$3.37258$ |
$[1, -1, 1, 211, -2572]$ |
\(y^2+xy+y=x^3-x^2+211x-2572\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 28.12.0-4.c.1.2, 78.6.0.?, $\ldots$ |
$[(34, 190)]$ |
$1$ |
| 7488.bl4 |
7488p1 |
7488.bl |
7488p |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
\( - 2^{18} \cdot 3^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4096$ |
$0.577514$ |
$12167/39$ |
$0.85844$ |
$3.36143$ |
$[0, 0, 0, 276, 3760]$ |
\(y^2=x^3+276x+3760\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.ba.1.14, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 7488.by4 |
7488bs1 |
7488.by |
7488bs |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
\( - 2^{18} \cdot 3^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1.903017102$ |
$1$ |
|
$5$ |
$4096$ |
$0.577514$ |
$12167/39$ |
$0.85844$ |
$3.36143$ |
$[0, 0, 0, 276, -3760]$ |
\(y^2=x^3+276x-3760\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.ba.1.6, 78.6.0.?, $\ldots$ |
$[(13, 45)]$ |
$1$ |
| 8112.s4 |
8112bh1 |
8112.s |
8112bh |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$1.611333123$ |
$1$ |
|
$3$ |
$10752$ |
$0.964108$ |
$12167/39$ |
$0.85844$ |
$3.84693$ |
$[0, 1, 0, 1296, 38676]$ |
\(y^2=x^3+x^2+1296x+38676\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.ba.1.1, 78.6.0.?, 104.24.0.?, $\ldots$ |
$[(95, 1014)]$ |
$1$ |
| 11271.g4 |
11271f1 |
11271.g |
11271f |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 17^{2} \) |
\( - 3 \cdot 13 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5304$ |
$48$ |
$0$ |
$15.48264147$ |
$1$ |
|
$1$ |
$5120$ |
$0.405093$ |
$12167/39$ |
$0.85844$ |
$2.99234$ |
$[1, 0, 1, 138, -1325]$ |
\(y^2+xy+y=x^3+138x-1325\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(3623383/441, 6737456188/441)]$ |
$1$ |
| 12675.ba4 |
12675w1 |
12675.ba |
12675w |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{6} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$21504$ |
$1.075680$ |
$12167/39$ |
$0.85844$ |
$3.80693$ |
$[1, 0, 1, 2024, -74527]$ |
\(y^2+xy+y=x^3+2024x-74527\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.ba.1, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 14079.e4 |
14079d1 |
14079.e |
14079d |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 19^{2} \) |
\( - 3 \cdot 13 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$7.339314361$ |
$1$ |
|
$1$ |
$7200$ |
$0.460706$ |
$12167/39$ |
$0.85844$ |
$2.99251$ |
$[1, 0, 0, 173, 1880]$ |
\(y^2+xy=x^3+173x+1880\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(-623/9, -4814/9)]$ |
$1$ |
| 14157.r4 |
14157j1 |
14157.r |
14157j |
$4$ |
$4$ |
\( 3^{2} \cdot 11^{2} \cdot 13 \) |
\( - 3^{7} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3432$ |
$48$ |
$0$ |
$2.393502953$ |
$1$ |
|
$3$ |
$10240$ |
$0.736740$ |
$12167/39$ |
$0.85844$ |
$3.33734$ |
$[1, -1, 0, 522, -9905]$ |
\(y^2+xy=x^3-x^2+522x-9905\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 44.12.0-4.c.1.2, 78.6.0.?, $\ldots$ |
$[(26, 131)]$ |
$1$ |
| 15600.b4 |
15600be1 |
15600.b |
15600be |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3 \cdot 5^{6} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1.336483428$ |
$1$ |
|
$19$ |
$8192$ |
$0.486352$ |
$12167/39$ |
$0.85844$ |
$2.99259$ |
$[0, -1, 0, 192, 2112]$ |
\(y^2=x^3-x^2+192x+2112\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.5, 60.12.0-4.c.1.1, $\ldots$ |
$[(2, 50), (8, 64)]$ |
$1$ |
| 20631.g4 |
20631a1 |
20631.g |
20631a |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 23^{2} \) |
\( - 3 \cdot 13 \cdot 23^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$7176$ |
$48$ |
$0$ |
$9.225242444$ |
$1$ |
|
$1$ |
$12672$ |
$0.556233$ |
$12167/39$ |
$0.85844$ |
$2.99280$ |
$[1, 1, 0, 254, 3415]$ |
\(y^2+xy=x^3+x^2+254x+3415\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(-4154/21, 203377/21)]$ |
$1$ |
| 24336.bo4 |
24336bt1 |
24336.bo |
24336bt |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.14 |
2B |
$312$ |
$48$ |
$0$ |
$2.276601815$ |
$1$ |
|
$3$ |
$86016$ |
$1.513414$ |
$12167/39$ |
$0.85844$ |
$4.08114$ |
$[0, 0, 0, 11661, -1032590]$ |
\(y^2=x^3+11661x-1032590\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 12.12.0-4.c.1.1, 24.24.0-24.ba.1.5, $\ldots$ |
$[(897, 27040)]$ |
$1$ |
| 24843.h4 |
24843s1 |
24843.h |
24843s |
$4$ |
$4$ |
\( 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$8.890383664$ |
$1$ |
|
$1$ |
$48384$ |
$1.243916$ |
$12167/39$ |
$0.85844$ |
$3.75327$ |
$[1, 0, 0, 3968, 205295]$ |
\(y^2+xy=x^3+3968x+205295\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 28.12.0-4.c.1.2, 78.6.0.?, $\ldots$ |
$[(6883/3, 562873/3)]$ |
$1$ |
| 30576.i4 |
30576bs1 |
30576.i |
30576bs |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$2.350138856$ |
$1$ |
|
$5$ |
$18432$ |
$0.654589$ |
$12167/39$ |
$0.85844$ |
$2.99308$ |
$[0, -1, 0, 376, -6096]$ |
\(y^2=x^3-x^2+376x-6096\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 56.12.0-4.c.1.5, 78.6.0.?, $\ldots$ |
$[(28, 160)]$ |
$1$ |
| 32448.be4 |
32448ch1 |
32448.be |
32448ch |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 13^{2} \) |
\( - 2^{18} \cdot 3 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$86016$ |
$1.310682$ |
$12167/39$ |
$0.85844$ |
$3.73390$ |
$[0, -1, 0, 5183, 304225]$ |
\(y^2=x^3-x^2+5183x+304225\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.ba.1.11, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 32448.di4 |
32448be1 |
32448.di |
32448be |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 13^{2} \) |
\( - 2^{18} \cdot 3 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$86016$ |
$1.310682$ |
$12167/39$ |
$0.85844$ |
$3.73390$ |
$[0, 1, 0, 5183, -304225]$ |
\(y^2=x^3+x^2+5183x-304225\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.ba.1.3, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 32799.d4 |
32799i1 |
32799.d |
32799i |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 29^{2} \) |
\( - 3 \cdot 13 \cdot 29^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$9048$ |
$48$ |
$0$ |
$11.72339116$ |
$1$ |
|
$1$ |
$22400$ |
$0.672134$ |
$12167/39$ |
$0.85844$ |
$2.99312$ |
$[1, 0, 0, 403, -6600]$ |
\(y^2+xy=x^3+403x-6600\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(73213/57, 19865252/57)]$ |
$1$ |
| 33813.e4 |
33813o1 |
33813.e |
33813o |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 3^{7} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5304$ |
$48$ |
$0$ |
$8.206095055$ |
$1$ |
|
$1$ |
$40960$ |
$0.954399$ |
$12167/39$ |
$0.85844$ |
$3.30918$ |
$[1, -1, 1, 1246, 35768]$ |
\(y^2+xy+y=x^3-x^2+1246x+35768\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 68.12.0-4.c.1.2, 78.6.0.?, $\ldots$ |
$[(1996/7, 126960/7)]$ |
$1$ |
| 37479.g4 |
37479d1 |
37479.g |
37479d |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 31^{2} \) |
\( - 3 \cdot 13 \cdot 31^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$9672$ |
$48$ |
$0$ |
$17.48590076$ |
$1$ |
|
$1$ |
$30240$ |
$0.705480$ |
$12167/39$ |
$0.85844$ |
$2.99321$ |
$[1, 0, 1, 460, 8141]$ |
\(y^2+xy+y=x^3+460x+8141\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(23180083/897, 143237917438/897)]$ |
$1$ |
| 38025.n4 |
38025bm1 |
38025.n |
38025bm |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 5^{6} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$172032$ |
$1.624987$ |
$12167/39$ |
$0.85844$ |
$4.03539$ |
$[1, -1, 1, 18220, 2012222]$ |
\(y^2+xy+y=x^3-x^2+18220x+2012222\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.3, 60.12.0-4.c.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 42237.c4 |
42237b1 |
42237.c |
42237b |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 3^{7} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5928$ |
$48$ |
$0$ |
$5.716259287$ |
$1$ |
|
$3$ |
$57600$ |
$1.010012$ |
$12167/39$ |
$0.85844$ |
$3.30272$ |
$[1, -1, 0, 1557, -50760]$ |
\(y^2+xy=x^3-x^2+1557x-50760\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 76.12.0.?, 78.6.0.?, $\ldots$ |
$[(280, 4580)]$ |
$1$ |
| 46800.s4 |
46800dm1 |
46800.s |
46800dm |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$0.778234651$ |
$1$ |
|
$9$ |
$65536$ |
$1.035658$ |
$12167/39$ |
$0.85844$ |
$3.29984$ |
$[0, 0, 0, 1725, -58750]$ |
\(y^2=x^3+1725x-58750\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0.ba.1, 78.6.0.?, $\ldots$ |
$[(55, 450)]$ |
$1$ |
| 47775.w4 |
47775u1 |
47775.w |
47775u |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3 \cdot 5^{6} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$2.089467139$ |
$1$ |
|
$5$ |
$36864$ |
$0.766160$ |
$12167/39$ |
$0.85844$ |
$2.99336$ |
$[1, 1, 1, 587, 11906]$ |
\(y^2+xy+y=x^3+x^2+587x+11906\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(10, 132)]$ |
$1$ |
| 53391.a4 |
53391c1 |
53391.a |
53391c |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 37^{2} \) |
\( - 3 \cdot 13 \cdot 37^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$11544$ |
$48$ |
$0$ |
$7.020257636$ |
$1$ |
|
$3$ |
$51840$ |
$0.793945$ |
$12167/39$ |
$0.85844$ |
$2.99343$ |
$[1, 1, 1, 656, -13504]$ |
\(y^2+xy+y=x^3+x^2+656x-13504\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(1104, 36160)]$ |
$1$ |
| 61347.u4 |
61347k1 |
61347.u |
61347k |
$4$ |
$4$ |
\( 3 \cdot 11^{2} \cdot 13^{2} \) |
\( - 3 \cdot 11^{6} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3432$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$215040$ |
$1.469908$ |
$12167/39$ |
$0.85844$ |
$3.69150$ |
$[1, 1, 0, 9799, 799440]$ |
\(y^2+xy=x^3+x^2+9799x+799440\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 44.12.0-4.c.1.2, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 61893.d4 |
61893l1 |
61893.d |
61893l |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \cdot 23^{2} \) |
\( - 3^{7} \cdot 13 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$7176$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$101376$ |
$1.105539$ |
$12167/39$ |
$0.85844$ |
$3.29224$ |
$[1, -1, 1, 2281, -89922]$ |
\(y^2+xy+y=x^3-x^2+2281x-89922\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 92.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 62400.dy4 |
62400bf1 |
62400.dy |
62400bf |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{18} \cdot 3 \cdot 5^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$65536$ |
$0.832926$ |
$12167/39$ |
$0.85844$ |
$2.99352$ |
$[0, -1, 0, 767, -17663]$ |
\(y^2=x^3-x^2+767x-17663\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.4, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 62400.ej4 |
62400ho1 |
62400.ej |
62400ho |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{18} \cdot 3 \cdot 5^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$65536$ |
$0.832926$ |
$12167/39$ |
$0.85844$ |
$2.99352$ |
$[0, 1, 0, 767, 17663]$ |
\(y^2=x^3+x^2+767x+17663\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.4, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 65559.f4 |
65559d1 |
65559.f |
65559d |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 41^{2} \) |
\( - 3 \cdot 13 \cdot 41^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$12792$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$69120$ |
$0.845272$ |
$12167/39$ |
$0.85844$ |
$2.99355$ |
$[1, 0, 1, 805, -18679]$ |
\(y^2+xy+y=x^3+805x-18679\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 72111.b4 |
72111e1 |
72111.b |
72111e |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 43^{2} \) |
\( - 3 \cdot 13 \cdot 43^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$13416$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$75264$ |
$0.869086$ |
$12167/39$ |
$0.85844$ |
$2.99361$ |
$[1, 0, 0, 886, 21699]$ |
\(y^2+xy=x^3+886x+21699\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 74529.bf4 |
74529z1 |
74529.bf |
74529z |
$4$ |
$4$ |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$16.71914392$ |
$1$ |
|
$1$ |
$387072$ |
$1.793222$ |
$12167/39$ |
$0.85844$ |
$3.97328$ |
$[1, -1, 0, 35712, -5542965]$ |
\(y^2+xy=x^3-x^2+35712x-5542965\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 56.12.0-4.c.1.3, 78.6.0.?, $\ldots$ |
$[(12627682/203, 47570863717/203)]$ |
$1$ |
| 75504.ci4 |
75504cn1 |
75504.ci |
75504cn |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3 \cdot 11^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3432$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$81920$ |
$0.880581$ |
$12167/39$ |
$0.85844$ |
$2.99363$ |
$[0, 1, 0, 928, -22860]$ |
\(y^2=x^3+x^2+928x-22860\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 88.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 86151.e4 |
86151a1 |
86151.e |
86151a |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 47^{2} \) |
\( - 3 \cdot 13 \cdot 47^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$14664$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$105984$ |
$0.913560$ |
$12167/39$ |
$0.85844$ |
$2.99371$ |
$[1, 1, 0, 1059, 28680]$ |
\(y^2+xy=x^3+x^2+1059x+28680\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 91728.fc4 |
91728ef1 |
91728.fc |
91728ef |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{7} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$147456$ |
$1.203896$ |
$12167/39$ |
$0.85844$ |
$3.28218$ |
$[0, 0, 0, 3381, 161210]$ |
\(y^2=x^3+3381x+161210\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 28.12.0-4.c.1.1, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 97344.z4 |
97344fo1 |
97344.z |
97344fo |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{18} \cdot 3^{7} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.13 |
2B |
$312$ |
$48$ |
$0$ |
$2.721129840$ |
$1$ |
|
$5$ |
$688128$ |
$1.859987$ |
$12167/39$ |
$0.85844$ |
$3.95065$ |
$[0, 0, 0, 46644, -8260720]$ |
\(y^2=x^3+46644x-8260720\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 24.24.0-24.ba.1.15, 78.6.0.?, $\ldots$ |
$[(322, 6336)]$ |
$1$ |
| 97344.ch4 |
97344cg1 |
97344.ch |
97344cg |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{18} \cdot 3^{7} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.13 |
2B |
$312$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$688128$ |
$1.859987$ |
$12167/39$ |
$0.85844$ |
$3.95065$ |
$[0, 0, 0, 46644, 8260720]$ |
\(y^2=x^3+46644x+8260720\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 24.24.0-24.ba.1.7, 78.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 98397.s4 |
98397y1 |
98397.s |
98397y |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \cdot 29^{2} \) |
\( - 3^{7} \cdot 13 \cdot 29^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$9048$ |
$48$ |
$0$ |
$10.40403015$ |
$1$ |
|
$1$ |
$179200$ |
$1.221441$ |
$12167/39$ |
$0.85844$ |
$3.28045$ |
$[1, -1, 0, 3627, 178200]$ |
\(y^2+xy=x^3-x^2+3627x+178200\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(24892/13, 4172202/13)]$ |
$1$ |
| 109551.b4 |
109551k1 |
109551.b |
109551k |
$4$ |
$4$ |
\( 3 \cdot 13 \cdot 53^{2} \) |
\( - 3 \cdot 13 \cdot 53^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$16536$ |
$48$ |
$0$ |
$13.63541089$ |
$1$ |
|
$1$ |
$149760$ |
$0.973632$ |
$12167/39$ |
$0.85844$ |
$2.99384$ |
$[1, 0, 0, 1346, -40381]$ |
\(y^2+xy=x^3+1346x-40381\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(611479/93, 486237829/93)]$ |
$1$ |
| 112437.a4 |
112437g1 |
112437.a |
112437g |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \cdot 31^{2} \) |
\( - 3^{7} \cdot 13 \cdot 31^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$9672$ |
$48$ |
$0$ |
$6.842922991$ |
$1$ |
|
$1$ |
$241920$ |
$1.254786$ |
$12167/39$ |
$0.85844$ |
$3.27724$ |
$[1, -1, 1, 4144, -219814]$ |
\(y^2+xy+y=x^3-x^2+4144x-219814\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 78.6.0.?, 104.12.0.?, $\ldots$ |
$[(472/3, 9371/3)]$ |
$1$ |