Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
26.a3 |
26a3 |
26.a |
26a |
$3$ |
$9$ |
\( 2 \cdot 13 \) |
\( - 2 \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-1.044226$ |
$12167/26$ |
$[1, 0, 1, 0, 0]$ |
\(y^2+xy+y=x^3\) |
208.a3 |
208a1 |
208.a |
208a |
$3$ |
$9$ |
\( 2^{4} \cdot 13 \) |
\( - 2^{13} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.166288191$ |
$1$ |
|
$8$ |
$16$ |
$-0.351079$ |
$12167/26$ |
$[0, -1, 0, 8, -16]$ |
\(y^2=x^3-x^2+8x-16\) |
234.e3 |
234e1 |
234.e |
234e |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.3 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$20$ |
$-0.494920$ |
$12167/26$ |
$[1, -1, 1, 4, -7]$ |
\(y^2+xy+y=x^3-x^2+4x-7\) |
338.f3 |
338c1 |
338.f |
338c |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \) |
\( - 2 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$112$ |
$0.238249$ |
$12167/26$ |
$[1, 0, 0, 81, 467]$ |
\(y^2+xy=x^3+81x+467\) |
650.j3 |
650h1 |
650.j |
650h |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 13 \) |
\( - 2 \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$72$ |
$-0.239507$ |
$12167/26$ |
$[1, 1, 1, 12, 31]$ |
\(y^2+xy+y=x^3+x^2+12x+31\) |
832.d3 |
832c1 |
832.d |
832c |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{19} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.330883202$ |
$1$ |
|
$4$ |
$128$ |
$-0.004505$ |
$12167/26$ |
$[0, -1, 0, 31, 97]$ |
\(y^2=x^3-x^2+31x+97\) |
832.i3 |
832g1 |
832.i |
832g |
$3$ |
$9$ |
\( 2^{6} \cdot 13 \) |
\( - 2^{19} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$128$ |
$-0.004505$ |
$12167/26$ |
$[0, 1, 0, 31, -97]$ |
\(y^2=x^3+x^2+31x-97\) |
1274.d3 |
1274c1 |
1274.d |
1274c |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$252$ |
$-0.071271$ |
$12167/26$ |
$[1, 1, 0, 24, -62]$ |
\(y^2+xy=x^3+x^2+24x-62\) |
1872.q3 |
1872s1 |
1872.q |
1872s |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$480$ |
$0.198227$ |
$12167/26$ |
$[0, 0, 0, 69, 362]$ |
\(y^2=x^3+69x+362\) |
2704.f3 |
2704g1 |
2704.f |
2704g |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{13} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$2688$ |
$0.931396$ |
$12167/26$ |
$[0, -1, 0, 1296, -29888]$ |
\(y^2=x^3-x^2+1296x-29888\) |
3042.a3 |
3042f1 |
3042.a |
3042f |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3360$ |
$0.787555$ |
$12167/26$ |
$[1, -1, 0, 729, -12609]$ |
\(y^2+xy=x^3-x^2+729x-12609\) |
3146.n3 |
3146l1 |
3146.n |
3146l |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 13 \) |
\( - 2 \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.339508810$ |
$1$ |
|
$0$ |
$720$ |
$0.154722$ |
$12167/26$ |
$[1, 0, 0, 58, -274]$ |
\(y^2+xy=x^3+58x-274\) |
5200.x3 |
5200p1 |
5200.x |
5200p |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.453640$ |
$12167/26$ |
$[0, 1, 0, 192, -1612]$ |
\(y^2=x^3+x^2+192x-1612\) |
5850.p3 |
5850i1 |
5850.p |
5850i |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$2160$ |
$0.309799$ |
$12167/26$ |
$[1, -1, 0, 108, -734]$ |
\(y^2+xy=x^3-x^2+108x-734\) |
7488.g3 |
7488t1 |
7488.g |
7488t |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.544801$ |
$12167/26$ |
$[0, 0, 0, 276, -2896]$ |
\(y^2=x^3+276x-2896\) |
7488.h3 |
7488bv1 |
7488.h |
7488bv |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.850278354$ |
$1$ |
|
$4$ |
$3840$ |
$0.544801$ |
$12167/26$ |
$[0, 0, 0, 276, 2896]$ |
\(y^2=x^3+276x+2896\) |
7514.c3 |
7514b1 |
7514.c |
7514b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3360$ |
$0.372381$ |
$12167/26$ |
$[1, 1, 0, 139, 1087]$ |
\(y^2+xy=x^3+x^2+139x+1087\) |
8450.c3 |
8450c1 |
8450.c |
8450c |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.886022883$ |
$1$ |
|
$4$ |
$12096$ |
$1.042967$ |
$12167/26$ |
$[1, 1, 0, 2025, 58375]$ |
\(y^2+xy=x^3+x^2+2025x+58375\) |
9386.j3 |
9386g1 |
9386.j |
9386g |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 19^{2} \) |
\( - 2 \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.692381732$ |
$1$ |
|
$0$ |
$4752$ |
$0.427994$ |
$12167/26$ |
$[1, 1, 1, 173, -1365]$ |
\(y^2+xy+y=x^3+x^2+173x-1365\) |
10192.bg3 |
10192u1 |
10192.bg |
10192u |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1.688060403$ |
$1$ |
|
$4$ |
$6048$ |
$0.621877$ |
$12167/26$ |
$[0, 1, 0, 376, 4724]$ |
\(y^2=x^3+x^2+376x+4724\) |
10816.k3 |
10816i1 |
10816.k |
10816i |
$3$ |
$9$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{19} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.847355898$ |
$1$ |
|
$2$ |
$21504$ |
$1.277969$ |
$12167/26$ |
$[0, -1, 0, 5183, 233921]$ |
\(y^2=x^3-x^2+5183x+233921\) |
10816.z3 |
10816bf1 |
10816.z |
10816bf |
$3$ |
$9$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{19} \cdot 13^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1.071599764$ |
$1$ |
|
$8$ |
$21504$ |
$1.277969$ |
$12167/26$ |
$[0, 1, 0, 5183, -233921]$ |
\(y^2=x^3+x^2+5183x-233921\) |
11466.bj3 |
11466cd1 |
11466.bj |
11466cd |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$7560$ |
$0.478035$ |
$12167/26$ |
$[1, -1, 1, 211, 1887]$ |
\(y^2+xy+y=x^3-x^2+211x+1887\) |
13754.e3 |
13754d1 |
13754.e |
13754d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 23^{2} \) |
\( - 2 \cdot 13 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3.363778387$ |
$1$ |
|
$0$ |
$8448$ |
$0.523521$ |
$12167/26$ |
$[1, 0, 1, 253, -2528]$ |
\(y^2+xy+y=x^3+253x-2528\) |
16562.bd3 |
16562bm1 |
16562.bd |
16562bm |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.804663676$ |
$1$ |
|
$0$ |
$42336$ |
$1.211205$ |
$12167/26$ |
$[1, 1, 1, 3968, -156213]$ |
\(y^2+xy+y=x^3+x^2+3968x-156213\) |
20800.bd3 |
20800db1 |
20800.bd |
20800db |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.010370350$ |
$1$ |
|
$2$ |
$13824$ |
$0.800214$ |
$12167/26$ |
$[0, -1, 0, 767, -13663]$ |
\(y^2=x^3-x^2+767x-13663\) |
20800.dc3 |
20800v1 |
20800.dc |
20800v |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$13824$ |
$0.800214$ |
$12167/26$ |
$[0, 1, 0, 767, 13663]$ |
\(y^2=x^3+x^2+767x+13663\) |
21866.h3 |
21866j1 |
21866.h |
21866j |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 29^{2} \) |
\( - 2 \cdot 13 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.236970459$ |
$1$ |
|
$0$ |
$16128$ |
$0.639422$ |
$12167/26$ |
$[1, 1, 1, 403, 5277]$ |
\(y^2+xy+y=x^3+x^2+403x+5277\) |
24336.h3 |
24336by1 |
24336.h |
24336by |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1.068691048$ |
$1$ |
|
$4$ |
$80640$ |
$1.480701$ |
$12167/26$ |
$[0, 0, 0, 11661, 795314]$ |
\(y^2=x^3+11661x+795314\) |
24986.b3 |
24986b1 |
24986.b |
24986b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 31^{2} \) |
\( - 2 \cdot 13 \cdot 31^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1.512251788$ |
$1$ |
|
$6$ |
$20160$ |
$0.672768$ |
$12167/26$ |
$[1, 1, 0, 461, -6049]$ |
\(y^2+xy=x^3+x^2+461x-6049\) |
25168.g3 |
25168bb1 |
25168.g |
25168bb |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 13 \) |
\( - 2^{13} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.924844933$ |
$1$ |
|
$4$ |
$17280$ |
$0.847869$ |
$12167/26$ |
$[0, -1, 0, 928, 17536]$ |
\(y^2=x^3-x^2+928x+17536\) |
28314.bb3 |
28314v1 |
28314.bb |
28314v |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3.192573244$ |
$1$ |
|
$0$ |
$21600$ |
$0.704028$ |
$12167/26$ |
$[1, -1, 0, 522, 7398]$ |
\(y^2+xy=x^3-x^2+522x+7398\) |
31850.cl3 |
31850bz1 |
31850.cl |
31850bz |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{6} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$27216$ |
$0.733448$ |
$12167/26$ |
$[1, 0, 0, 587, -8933]$ |
\(y^2+xy=x^3+587x-8933\) |
35594.e3 |
35594d1 |
35594.e |
35594d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 37^{2} \) |
\( - 2 \cdot 13 \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$33480$ |
$0.761233$ |
$12167/26$ |
$[1, 0, 0, 656, 10666]$ |
\(y^2+xy=x^3+656x+10666\) |
40768.ba3 |
40768dr1 |
40768.ba |
40768dr |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$48384$ |
$0.968450$ |
$12167/26$ |
$[0, -1, 0, 1503, 36289]$ |
\(y^2=x^3-x^2+1503x+36289\) |
40768.cn3 |
40768bl1 |
40768.cn |
40768bl |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.284397626$ |
$1$ |
|
$2$ |
$48384$ |
$0.968450$ |
$12167/26$ |
$[0, 1, 0, 1503, -36289]$ |
\(y^2=x^3+x^2+1503x-36289\) |
40898.t3 |
40898i1 |
40898.t |
40898i |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2 \cdot 11^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$120960$ |
$1.437197$ |
$12167/26$ |
$[1, 0, 1, 9798, -611778]$ |
\(y^2+xy+y=x^3+9798x-611778\) |
43706.f3 |
43706b1 |
43706.f |
43706b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 41^{2} \) |
\( - 2 \cdot 13 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.947613569$ |
$1$ |
|
$4$ |
$47040$ |
$0.812560$ |
$12167/26$ |
$[1, 1, 0, 806, 14774]$ |
\(y^2+xy=x^3+x^2+806x+14774\) |
46800.cj3 |
46800db1 |
46800.cj |
46800db |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.558427869$ |
$1$ |
|
$2$ |
$51840$ |
$1.002947$ |
$12167/26$ |
$[0, 0, 0, 1725, 45250]$ |
\(y^2=x^3+1725x+45250\) |
48074.d3 |
48074e1 |
48074.d |
48074e |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 43^{2} \) |
\( - 2 \cdot 13 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$54180$ |
$0.836374$ |
$12167/26$ |
$[1, 1, 1, 886, -16287]$ |
\(y^2+xy+y=x^3+x^2+886x-16287\) |
57434.c3 |
57434b1 |
57434.c |
57434b |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 47^{2} \) |
\( - 2 \cdot 13 \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$70380$ |
$0.880848$ |
$12167/26$ |
$[1, 0, 1, 1058, -21662]$ |
\(y^2+xy+y=x^3+1058x-21662\) |
60112.r3 |
60112x1 |
60112.r |
60112x |
$3$ |
$9$ |
\( 2^{4} \cdot 13 \cdot 17^{2} \) |
\( - 2^{13} \cdot 13 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$5.804679038$ |
$1$ |
|
$0$ |
$80640$ |
$1.065529$ |
$12167/26$ |
$[0, 1, 0, 2216, -65132]$ |
\(y^2=x^3+x^2+2216x-65132\) |
67600.co3 |
67600bn1 |
67600.co |
67600bn |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 5^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$290304$ |
$1.736115$ |
$12167/26$ |
$[0, 1, 0, 32392, -3671212]$ |
\(y^2=x^3+x^2+32392x-3671212\) |
67626.w3 |
67626bh1 |
67626.w |
67626bh |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$100800$ |
$0.921687$ |
$12167/26$ |
$[1, -1, 1, 1246, -28101]$ |
\(y^2+xy+y=x^3-x^2+1246x-28101\) |
73034.k3 |
73034k1 |
73034.k |
73034k |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 53^{2} \) |
\( - 2 \cdot 13 \cdot 53^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$8.538195671$ |
$1$ |
|
$0$ |
$101088$ |
$0.940920$ |
$12167/26$ |
$[1, 1, 1, 1346, 31749]$ |
\(y^2+xy+y=x^3+x^2+1346x+31749\) |
75088.w3 |
75088t1 |
75088.w |
75088t |
$3$ |
$9$ |
\( 2^{4} \cdot 13 \cdot 19^{2} \) |
\( - 2^{13} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1.756081824$ |
$1$ |
|
$2$ |
$114048$ |
$1.121141$ |
$12167/26$ |
$[0, 1, 0, 2768, 92884]$ |
\(y^2=x^3+x^2+2768x+92884\) |
76050.en3 |
76050eh1 |
76050.en |
76050eh |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$10.66270431$ |
$1$ |
|
$0$ |
$362880$ |
$1.592274$ |
$12167/26$ |
$[1, -1, 1, 18220, -1557903]$ |
\(y^2+xy+y=x^3-x^2+18220x-1557903\) |
78650.k3 |
78650p1 |
78650.k |
78650p |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2 \cdot 5^{6} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$2.751368418$ |
$1$ |
|
$2$ |
$77760$ |
$0.959441$ |
$12167/26$ |
$[1, 1, 0, 1450, -34250]$ |
\(y^2+xy=x^3+x^2+1450x-34250\) |
84474.ba3 |
84474q1 |
84474.ba |
84474q |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2 \cdot 3^{6} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4.336191826$ |
$1$ |
|
$0$ |
$142560$ |
$0.977300$ |
$12167/26$ |
$[1, -1, 0, 1557, 38407]$ |
\(y^2+xy=x^3-x^2+1557x+38407\) |
90506.f3 |
90506d1 |
90506.f |
90506d |
$3$ |
$9$ |
\( 2 \cdot 13 \cdot 59^{2} \) |
\( - 2 \cdot 13 \cdot 59^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$7.216007792$ |
$1$ |
|
$0$ |
$137808$ |
$0.994543$ |
$12167/26$ |
$[1, 0, 0, 1668, -42886]$ |
\(y^2+xy=x^3+1668x-42886\) |