Learn more

Refine search


Results (1-50 of 116 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
26.a3 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 0, 0]$ \(y^2+xy+y=x^3\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$
208.a3 208.a \( 2^{4} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.166288191$ $[0, -1, 0, 8, -16]$ \(y^2=x^3-x^2+8x-16\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 104.2.0.?, $\ldots$
234.e3 234.e \( 2 \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 4, -7]$ \(y^2+xy+y=x^3-x^2+4x-7\) 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$
338.f3 338.f \( 2 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 81, 467]$ \(y^2+xy=x^3+81x+467\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 39.8.0-3.a.1.1, 72.24.0.?, $\ldots$
650.j3 650.j \( 2 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 12, 31]$ \(y^2+xy+y=x^3+x^2+12x+31\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 104.2.0.?, $\ldots$
832.d3 832.d \( 2^{6} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.330883202$ $[0, -1, 0, 31, 97]$ \(y^2=x^3-x^2+31x+97\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 72.24.0.?, 104.2.0.?, $\ldots$
832.i3 832.i \( 2^{6} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 31, -97]$ \(y^2=x^3+x^2+31x-97\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 72.24.0.?, 78.8.0.?, $\ldots$
1274.d3 1274.d \( 2 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 24, -62]$ \(y^2+xy=x^3+x^2+24x-62\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 104.2.0.?, $\ldots$
1872.q3 1872.q \( 2^{4} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 69, 362]$ \(y^2=x^3+69x+362\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 104.2.0.?, $\ldots$
2704.f3 2704.f \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1296, -29888]$ \(y^2=x^3-x^2+1296x-29888\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 72.24.0.?, 104.2.0.?, $\ldots$
3042.a3 3042.a \( 2 \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 729, -12609]$ \(y^2+xy=x^3-x^2+729x-12609\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 39.8.0-3.a.1.2, 72.24.0.?, $\ldots$
3146.n3 3146.n \( 2 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.339508810$ $[1, 0, 0, 58, -274]$ \(y^2+xy=x^3+58x-274\) 3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.2, 99.24.0.?, 104.2.0.?, $\ldots$
5200.x3 5200.x \( 2^{4} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 192, -1612]$ \(y^2=x^3+x^2+192x-1612\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$
5850.p3 5850.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 108, -734]$ \(y^2+xy=x^3-x^2+108x-734\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 104.2.0.?, $\ldots$
7488.g3 7488.g \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 276, -2896]$ \(y^2=x^3+276x-2896\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 72.24.0.?, 104.2.0.?, $\ldots$
7488.h3 7488.h \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.850278354$ $[0, 0, 0, 276, 2896]$ \(y^2=x^3+276x+2896\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 72.24.0.?, 78.8.0.?, $\ldots$
7514.c3 7514.c \( 2 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 139, 1087]$ \(y^2+xy=x^3+x^2+139x+1087\) 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$
8450.c3 8450.c \( 2 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.886022883$ $[1, 1, 0, 2025, 58375]$ \(y^2+xy=x^3+x^2+2025x+58375\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$
9386.j3 9386.j \( 2 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.692381732$ $[1, 1, 1, 173, -1365]$ \(y^2+xy+y=x^3+x^2+173x-1365\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$
10192.bg3 10192.bg \( 2^{4} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.688060403$ $[0, 1, 0, 376, 4724]$ \(y^2=x^3+x^2+376x+4724\) 3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 104.2.0.?, 117.36.0.?, $\ldots$
10816.k3 10816.k \( 2^{6} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.847355898$ $[0, -1, 0, 5183, 233921]$ \(y^2=x^3-x^2+5183x+233921\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 36.24.0-9.a.1.4, 104.2.0.?, $\ldots$
10816.z3 10816.z \( 2^{6} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.071599764$ $[0, 1, 0, 5183, -233921]$ \(y^2=x^3+x^2+5183x-233921\) 3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 104.2.0.?, $\ldots$
11466.bj3 11466.bj \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 211, 1887]$ \(y^2+xy+y=x^3-x^2+211x+1887\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 104.2.0.?, $\ldots$
13754.e3 13754.e \( 2 \cdot 13 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $3.363778387$ $[1, 0, 1, 253, -2528]$ \(y^2+xy+y=x^3+253x-2528\) 3.4.0.a.1, 9.12.0.a.1, 69.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$
16562.bd3 16562.bd \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.804663676$ $[1, 1, 1, 3968, -156213]$ \(y^2+xy+y=x^3+x^2+3968x-156213\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$
20800.bd3 20800.bd \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.010370350$ $[0, -1, 0, 767, -13663]$ \(y^2=x^3-x^2+767x-13663\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$
20800.dc3 20800.dc \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 767, 13663]$ \(y^2=x^3+x^2+767x+13663\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$
21866.h3 21866.h \( 2 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $2.236970459$ $[1, 1, 1, 403, 5277]$ \(y^2+xy+y=x^3+x^2+403x+5277\) 3.4.0.a.1, 9.12.0.a.1, 87.8.0.?, 104.2.0.?, 117.36.0.?, $\ldots$
24336.h3 24336.h \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.068691048$ $[0, 0, 0, 11661, 795314]$ \(y^2=x^3+11661x+795314\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 104.2.0.?, $\ldots$
24986.b3 24986.b \( 2 \cdot 13 \cdot 31^{2} \) $2$ $\mathsf{trivial}$ $1.512251788$ $[1, 1, 0, 461, -6049]$ \(y^2+xy=x^3+x^2+461x-6049\) 3.4.0.a.1, 9.12.0.a.1, 93.8.0.?, 104.2.0.?, 117.36.0.?, $\ldots$
25168.g3 25168.g \( 2^{4} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.924844933$ $[0, -1, 0, 928, 17536]$ \(y^2=x^3-x^2+928x+17536\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 132.8.0.?, $\ldots$
28314.bb3 28314.bb \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.192573244$ $[1, -1, 0, 522, 7398]$ \(y^2+xy=x^3-x^2+522x+7398\) 3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, 104.2.0.?, $\ldots$
31850.cl3 31850.cl \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 587, -8933]$ \(y^2+xy=x^3+587x-8933\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 105.8.0.?, 117.36.0.?, $\ldots$
35594.e3 35594.e \( 2 \cdot 13 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 656, 10666]$ \(y^2+xy=x^3+656x+10666\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 111.8.0.?, 117.36.0.?, $\ldots$
40768.ba3 40768.ba \( 2^{6} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1503, 36289]$ \(y^2=x^3-x^2+1503x+36289\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$
40768.cn3 40768.cn \( 2^{6} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.284397626$ $[0, 1, 0, 1503, -36289]$ \(y^2=x^3+x^2+1503x-36289\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$
40898.t3 40898.t \( 2 \cdot 11^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 9798, -611778]$ \(y^2+xy+y=x^3+9798x-611778\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 264.8.0.?, $\ldots$
43706.f3 43706.f \( 2 \cdot 13 \cdot 41^{2} \) $1$ $\mathsf{trivial}$ $0.947613569$ $[1, 1, 0, 806, 14774]$ \(y^2+xy=x^3+x^2+806x+14774\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 123.8.0.?, $\ldots$
46800.cj3 46800.cj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.558427869$ $[0, 0, 0, 1725, 45250]$ \(y^2=x^3+1725x+45250\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$
48074.d3 48074.d \( 2 \cdot 13 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 886, -16287]$ \(y^2+xy+y=x^3+x^2+886x-16287\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 129.8.0.?, $\ldots$
57434.c3 57434.c \( 2 \cdot 13 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1058, -21662]$ \(y^2+xy+y=x^3+1058x-21662\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 141.8.0.?, $\ldots$
60112.r3 60112.r \( 2^{4} \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $5.804679038$ $[0, 1, 0, 2216, -65132]$ \(y^2=x^3+x^2+2216x-65132\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 204.8.0.?, $\ldots$
67600.co3 67600.co \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 32392, -3671212]$ \(y^2=x^3+x^2+32392x-3671212\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$
67626.w3 67626.w \( 2 \cdot 3^{2} \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 1246, -28101]$ \(y^2+xy+y=x^3-x^2+1246x-28101\) 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 104.2.0.?, 117.36.0.?, $\ldots$
73034.k3 73034.k \( 2 \cdot 13 \cdot 53^{2} \) $1$ $\mathsf{trivial}$ $8.538195671$ $[1, 1, 1, 1346, 31749]$ \(y^2+xy+y=x^3+x^2+1346x+31749\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 159.8.0.?, $\ldots$
75088.w3 75088.w \( 2^{4} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.756081824$ $[0, 1, 0, 2768, 92884]$ \(y^2=x^3+x^2+2768x+92884\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 228.8.0.?, $\ldots$
76050.en3 76050.en \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $10.66270431$ $[1, -1, 1, 18220, -1557903]$ \(y^2+xy+y=x^3-x^2+18220x-1557903\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$
78650.k3 78650.k \( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.751368418$ $[1, 1, 0, 1450, -34250]$ \(y^2+xy=x^3+x^2+1450x-34250\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 165.8.0.?, $\ldots$
84474.ba3 84474.ba \( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.336191826$ $[1, -1, 0, 1557, 38407]$ \(y^2+xy=x^3-x^2+1557x+38407\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 104.2.0.?, 117.36.0.?, $\ldots$
90506.f3 90506.f \( 2 \cdot 13 \cdot 59^{2} \) $1$ $\mathsf{trivial}$ $7.216007792$ $[1, 0, 0, 1668, -42886]$ \(y^2+xy=x^3+1668x-42886\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 177.8.0.?, $\ldots$
Next   displayed columns for results