Learn more

Refine search


Results (1-50 of 66 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
162.a2 162.a \( 2 \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $0.101978294$ $[1, -1, 0, 39, -19]$ \(y^2+xy=x^3-x^2+39x-19\) 3.8.0-3.a.1.1, 4.8.0.b.1, 12.128.1-12.b.1.3
162.d2 162.d \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 4, -1]$ \(y^2+xy+y=x^3-x^2+4x-1\) 3.8.0-3.a.1.2, 4.16.0-4.b.1.1, 12.128.1-12.b.1.4
1296.c2 1296.c \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 621, 594]$ \(y^2=x^3+621x+594\) 3.4.0.a.1, 4.8.0.b.1, 6.8.0-3.a.1.2, 12.128.1-12.b.1.1
1296.l2 1296.l \( 2^{4} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 69, -22]$ \(y^2=x^3+69x-22\) 3.4.0.a.1, 4.16.0-4.b.1.1, 6.8.0-3.a.1.1, 12.128.1-12.b.1.2
4050.r2 4050.r \( 2 \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.308711465$ $[1, -1, 0, 108, 16]$ \(y^2+xy=x^3-x^2+108x+16\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 15.8.0-3.a.1.2, 20.16.0-4.b.1.1, $\ldots$
4050.bh2 4050.bh \( 2 \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 970, -1403]$ \(y^2+xy+y=x^3-x^2+970x-1403\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 15.8.0-3.a.1.1, 60.128.1-12.b.1.1
5184.c2 5184.c \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $0.743153780$ $[0, 0, 0, 276, 176]$ \(y^2=x^3+276x+176\) 3.4.0.a.1, 4.8.0.b.1, 8.16.0-4.b.1.1, 12.64.1.b.1, 24.128.1-12.b.1.2
5184.h2 5184.h \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 276, -176]$ \(y^2=x^3+276x-176\) 3.4.0.a.1, 4.8.0.b.1, 8.16.0-4.b.1.1, 12.64.1.b.1, 24.128.1-12.b.1.4
5184.y2 5184.y \( 2^{6} \cdot 3^{4} \) $1$ $\mathsf{trivial}$ $2.011840550$ $[0, 0, 0, 2484, -4752]$ \(y^2=x^3+2484x-4752\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 24.128.1-12.b.1.1
5184.bd2 5184.bd \( 2^{6} \cdot 3^{4} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2484, 4752]$ \(y^2=x^3+2484x+4752\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 24.128.1-12.b.1.3
7938.n2 7938.n \( 2 \cdot 3^{4} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1902, 2708]$ \(y^2+xy=x^3-x^2+1902x+2708\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 21.8.0-3.a.1.2, 84.128.1.?
7938.s2 7938.s \( 2 \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.457897845$ $[1, -1, 1, 211, -171]$ \(y^2+xy+y=x^3-x^2+211x-171\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 21.8.0-3.a.1.1, 28.16.0-4.b.1.1, $\ldots$
19602.p2 19602.p \( 2 \cdot 3^{4} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 522, -588]$ \(y^2+xy=x^3-x^2+522x-588\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 33.8.0-3.a.1.2, 44.16.0-4.b.1.1, $\ldots$
19602.s2 19602.s \( 2 \cdot 3^{4} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.465407675$ $[1, -1, 1, 4696, 11179]$ \(y^2+xy+y=x^3-x^2+4696x+11179\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 33.8.0-3.a.1.1, 132.128.1.?
27378.c2 27378.c \( 2 \cdot 3^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.682916190$ $[1, -1, 0, 729, 573]$ \(y^2+xy=x^3-x^2+729x+573\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 39.8.0-3.a.1.1, 52.16.0-4.b.1.1, $\ldots$
27378.v2 27378.v \( 2 \cdot 3^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 6559, -22031]$ \(y^2+xy+y=x^3-x^2+6559x-22031\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 39.8.0-3.a.1.2, 156.128.1.?
32400.f2 32400.f \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1725, -2750]$ \(y^2=x^3+1725x-2750\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 20.16.0-4.b.1.1, 30.8.0-3.a.1.1, $\ldots$
32400.g2 32400.g \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 15525, 74250]$ \(y^2=x^3+15525x+74250\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 30.8.0-3.a.1.2, 60.128.1-12.b.1.2
46818.e2 46818.e \( 2 \cdot 3^{4} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $9.177656504$ $[1, -1, 0, 11217, -48403]$ \(y^2+xy=x^3-x^2+11217x-48403\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 51.8.0-3.a.1.1, 204.128.1.?
46818.j2 46818.j \( 2 \cdot 3^{4} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 1246, 1377]$ \(y^2+xy+y=x^3-x^2+1246x+1377\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 51.8.0-3.a.1.2, 68.16.0-4.b.1.1, $\ldots$
58482.n2 58482.n \( 2 \cdot 3^{4} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1557, -2747]$ \(y^2+xy=x^3-x^2+1557x-2747\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 57.8.0-3.a.1.1, 76.16.0.?, $\ldots$
58482.p2 58482.p \( 2 \cdot 3^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.288063135$ $[1, -1, 1, 14011, 60157]$ \(y^2+xy+y=x^3-x^2+14011x+60157\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 57.8.0-3.a.1.2, 228.128.1.?
63504.i2 63504.i \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.989957051$ $[0, 0, 0, 3381, 7546]$ \(y^2=x^3+3381x+7546\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 28.16.0-4.b.1.1, 42.8.0-3.a.1.2, $\ldots$
63504.cp2 63504.cp \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.525600455$ $[0, 0, 0, 30429, -203742]$ \(y^2=x^3+30429x-203742\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 42.8.0-3.a.1.1, 84.128.1.?
85698.l2 85698.l \( 2 \cdot 3^{4} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 20532, 107792]$ \(y^2+xy=x^3-x^2+20532x+107792\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 69.8.0-3.a.1.1, 276.128.1.?
85698.o2 85698.o \( 2 \cdot 3^{4} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $1.469487590$ $[1, -1, 1, 2281, -4753]$ \(y^2+xy+y=x^3-x^2+2281x-4753\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 69.8.0-3.a.1.2, 92.16.0.?, $\ldots$
129600.r2 129600.r \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 6900, -22000]$ \(y^2=x^3+6900x-22000\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 40.16.0-4.b.1.1, 120.128.1.?
129600.s2 129600.s \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 62100, 594000]$ \(y^2=x^3+62100x+594000\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 120.128.1.?
129600.ir2 129600.ir \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $5.373521398$ $[0, 0, 0, 6900, 22000]$ \(y^2=x^3+6900x+22000\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 40.16.0-4.b.1.1, 120.128.1.?
129600.is2 129600.is \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $3.279994357$ $[0, 0, 0, 62100, -594000]$ \(y^2=x^3+62100x-594000\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 120.128.1.?
136242.t2 136242.t \( 2 \cdot 3^{4} \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $5.429920650$ $[1, -1, 0, 3627, 7477]$ \(y^2+xy=x^3-x^2+3627x+7477\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 87.8.0.?, 116.16.0.?, $\ldots$
136242.z2 136242.z \( 2 \cdot 3^{4} \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 32641, -234521]$ \(y^2+xy+y=x^3-x^2+32641x-234521\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 87.8.0.?, 348.128.1.?
155682.a2 155682.a \( 2 \cdot 3^{4} \cdot 31^{2} \) $2$ $\mathsf{trivial}$ $6.026229211$ $[1, -1, 0, 37299, 267173]$ \(y^2+xy=x^3-x^2+37299x+267173\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 93.8.0.?, 372.128.1.?
155682.z2 155682.z \( 2 \cdot 3^{4} \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $2.223593758$ $[1, -1, 1, 4144, -11277]$ \(y^2+xy+y=x^3-x^2+4144x-11277\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 93.8.0.?, 124.16.0.?, $\ldots$
156816.g2 156816.g \( 2^{4} \cdot 3^{4} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.811381322$ $[0, 0, 0, 75141, -790614]$ \(y^2=x^3+75141x-790614\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 66.8.0-3.a.1.2, 132.128.1.?
156816.db2 156816.db \( 2^{4} \cdot 3^{4} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $4.855561981$ $[0, 0, 0, 8349, 29282]$ \(y^2=x^3+8349x+29282\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 44.16.0-4.b.1.1, 66.8.0-3.a.1.1, $\ldots$
198450.cd2 198450.cd \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 5283, -16059]$ \(y^2+xy=x^3-x^2+5283x-16059\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 105.8.0.?, 140.16.0.?, $\ldots$
198450.gl2 198450.gl \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.330453660$ $[1, -1, 1, 47545, 386047]$ \(y^2+xy+y=x^3-x^2+47545x+386047\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 105.8.0.?, 420.128.1.?
219024.d2 219024.d \( 2^{4} \cdot 3^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 11661, -48334]$ \(y^2=x^3+11661x-48334\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 52.16.0-4.b.1.1, 78.8.0.?, $\ldots$
219024.cs2 219024.cs \( 2^{4} \cdot 3^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 104949, 1305018]$ \(y^2=x^3+104949x+1305018\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 78.8.0.?, 156.128.1.?
221778.b2 221778.b \( 2 \cdot 3^{4} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $3.741259697$ $[1, -1, 0, 5904, 15936]$ \(y^2+xy=x^3-x^2+5904x+15936\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 111.8.0.?, 148.16.0.?, $\ldots$
221778.w2 221778.w \( 2 \cdot 3^{4} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 53134, -483407]$ \(y^2+xy+y=x^3-x^2+53134x-483407\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 111.8.0.?, 444.128.1.?
254016.z2 254016.z \( 2^{6} \cdot 3^{4} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $2.465629329$ $[0, 0, 0, 121716, 1629936]$ \(y^2=x^3+121716x+1629936\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 168.128.1.?
254016.ba2 254016.ba \( 2^{6} \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $6.597892367$ $[0, 0, 0, 121716, -1629936]$ \(y^2=x^3+121716x-1629936\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 168.128.1.?
254016.hh2 254016.hh \( 2^{6} \cdot 3^{4} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 13524, -60368]$ \(y^2=x^3+13524x-60368\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 56.16.0-4.b.1.1, 168.128.1.?
254016.hi2 254016.hi \( 2^{6} \cdot 3^{4} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $7.895189405$ $[0, 0, 0, 13524, 60368]$ \(y^2=x^3+13524x+60368\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 56.16.0-4.b.1.1, 168.128.1.?
272322.c2 272322.c \( 2 \cdot 3^{4} \cdot 41^{2} \) $1$ $\mathsf{trivial}$ $3.238671070$ $[1, -1, 0, 65244, -655984]$ \(y^2+xy=x^3-x^2+65244x-655984\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 123.8.0.?, 492.128.1.?
272322.be2 272322.be \( 2 \cdot 3^{4} \cdot 41^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 7249, 21879]$ \(y^2+xy+y=x^3-x^2+7249x+21879\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 123.8.0.?, 164.16.0.?, $\ldots$
299538.a2 299538.a \( 2 \cdot 3^{4} \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 7974, -29324]$ \(y^2+xy=x^3-x^2+7974x-29324\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 129.8.0.?, 172.16.0.?, $\ldots$
299538.z2 299538.z \( 2 \cdot 3^{4} \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $7.364239155$ $[1, -1, 1, 71764, 719983]$ \(y^2+xy+y=x^3-x^2+71764x+719983\) 3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.1, 129.8.0.?, 516.128.1.?
Next   displayed columns for results