| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 3154.c1 |
3154c1 |
3154.c |
3154c |
$1$ |
$1$ |
\( 2 \cdot 19 \cdot 83 \) |
\( - 2^{10} \cdot 19^{2} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.108081160$ |
$1$ |
|
$8$ |
$1200$ |
$0.524679$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.26591$ |
$[1, 1, 1, -1968, 32785]$ |
\(y^2+xy+y=x^3+x^2-1968x+32785\) |
166.2.0.? |
$[(23, 7)]$ |
| 25232.j1 |
25232j1 |
25232.j |
25232j |
$1$ |
$1$ |
\( 2^{4} \cdot 19 \cdot 83 \) |
\( - 2^{22} \cdot 19^{2} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$3.944557241$ |
$1$ |
|
$2$ |
$28800$ |
$1.217827$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.21136$ |
$[0, 1, 0, -31488, -2161228]$ |
\(y^2=x^3+x^2-31488x-2161228\) |
166.2.0.? |
$[(1066, 34304)]$ |
| 28386.b1 |
28386a1 |
28386.b |
28386a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19 \cdot 83 \) |
\( - 2^{10} \cdot 3^{6} \cdot 19^{2} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36000$ |
$1.073986$ |
$-842971295994625/30682112$ |
$0.90933$ |
$3.99464$ |
$[1, -1, 0, -17712, -902912]$ |
\(y^2+xy=x^3-x^2-17712x-902912\) |
166.2.0.? |
$[ ]$ |
| 59926.d1 |
59926b1 |
59926.d |
59926b |
$1$ |
$1$ |
\( 2 \cdot 19^{2} \cdot 83 \) |
\( - 2^{10} \cdot 19^{8} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$17.75285037$ |
$1$ |
|
$0$ |
$432000$ |
$1.996899$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.73005$ |
$[1, 0, 1, -710456, -230557178]$ |
\(y^2+xy+y=x^3-710456x-230557178\) |
166.2.0.? |
$[(3887142193/1827, 135739772389817/1827)]$ |
| 78850.e1 |
78850a1 |
78850.e |
78850a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \cdot 83 \) |
\( - 2^{10} \cdot 5^{6} \cdot 19^{2} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.763831325$ |
$1$ |
|
$4$ |
$172800$ |
$1.329399$ |
$-842971295994625/30682112$ |
$0.90933$ |
$3.90452$ |
$[1, 0, 1, -49201, 4196548]$ |
\(y^2+xy+y=x^3-49201x+4196548\) |
166.2.0.? |
$[(107, 346)]$ |
| 100928.l1 |
100928v1 |
100928.l |
100928v |
$1$ |
$1$ |
\( 2^{6} \cdot 19 \cdot 83 \) |
\( - 2^{28} \cdot 19^{2} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$11.61298820$ |
$1$ |
|
$0$ |
$230400$ |
$1.564400$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.06561$ |
$[0, -1, 0, -125953, -17163871]$ |
\(y^2=x^3-x^2-125953x-17163871\) |
166.2.0.? |
$[(683471/37, 336536360/37)]$ |
| 100928.v1 |
100928e1 |
100928.v |
100928e |
$1$ |
$1$ |
\( 2^{6} \cdot 19 \cdot 83 \) |
\( - 2^{28} \cdot 19^{2} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$230400$ |
$1.564400$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.06561$ |
$[0, 1, 0, -125953, 17163871]$ |
\(y^2=x^3+x^2-125953x+17163871\) |
166.2.0.? |
$[ ]$ |
| 154546.i1 |
154546c1 |
154546.i |
154546c |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 19 \cdot 83 \) |
\( - 2^{10} \cdot 7^{6} \cdot 19^{2} \cdot 83 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$453600$ |
$1.497635$ |
$-842971295994625/30682112$ |
$0.90933$ |
$3.85358$ |
$[1, 0, 0, -96433, -11534615]$ |
\(y^2+xy=x^3-96433x-11534615\) |
166.2.0.? |
$[ ]$ |
| 227088.o1 |
227088i1 |
227088.o |
227088i |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \cdot 83 \) |
\( - 2^{22} \cdot 3^{6} \cdot 19^{2} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$1.091725953$ |
$1$ |
|
$4$ |
$864000$ |
$1.767134$ |
$-842971295994625/30682112$ |
$0.90933$ |
$3.99555$ |
$[0, 0, 0, -283395, 58069762]$ |
\(y^2=x^3-283395x+58069762\) |
166.2.0.? |
$[(129, 4864)]$ |
| 261782.b1 |
261782b1 |
261782.b |
261782b |
$1$ |
$1$ |
\( 2 \cdot 19 \cdot 83^{2} \) |
\( - 2^{10} \cdot 19^{2} \cdot 83^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$14.58556199$ |
$1$ |
|
$0$ |
$8265600$ |
$2.734100$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.88014$ |
$[1, 1, 0, -13557695, -19220657723]$ |
\(y^2+xy=x^3+x^2-13557695x-19220657723\) |
166.2.0.? |
$[(2966149022/827, 32601618733019/827)]$ |
| 381634.b1 |
381634b1 |
381634.b |
381634b |
$1$ |
$1$ |
\( 2 \cdot 11^{2} \cdot 19 \cdot 83 \) |
\( - 2^{10} \cdot 11^{6} \cdot 19^{2} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$5.738961395$ |
$1$ |
|
$2$ |
$1716000$ |
$1.723627$ |
$-842971295994625/30682112$ |
$0.90933$ |
$3.79354$ |
$[1, 1, 0, -238130, -44827724]$ |
\(y^2+xy=x^3+x^2-238130x-44827724\) |
166.2.0.? |
$[(7380, 628934)]$ |
| 479408.n1 |
479408n1 |
479408.n |
479408n |
$1$ |
$1$ |
\( 2^{4} \cdot 19^{2} \cdot 83 \) |
\( - 2^{22} \cdot 19^{8} \cdot 83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$166$ |
$2$ |
$0$ |
$3.671777739$ |
$1$ |
|
$0$ |
$10368000$ |
$2.690044$ |
$-842971295994625/30682112$ |
$0.90933$ |
$4.61399$ |
$[0, -1, 0, -11367288, 14755659376]$ |
\(y^2=x^3-x^2-11367288x+14755659376\) |
166.2.0.? |
$[(26812/3, 2310400/3)]$ |