Curve |
Isogeny class |
|
LMFDB label |
Cremona label |
LMFDB label |
Cremona label |
Weierstrass coefficients |
Rank |
Torsion structure |
1120.c1 |
1120d1
|
1120.c |
1120d
|
$[0, -1, 0, -301, -1915]$ |
$0$ |
trivial |
1120.k1 |
1120a1
|
1120.k |
1120a
|
$[0, 1, 0, -301, 1915]$ |
$1$ |
trivial |
2240.i1 |
2240x1
|
2240.i |
2240x
|
$[0, -1, 0, -75, 277]$ |
$1$ |
trivial |
2240.x1 |
2240z1
|
2240.x |
2240z
|
$[0, 1, 0, -75, -277]$ |
$0$ |
trivial |
5600.g1 |
5600r1
|
5600.g |
5600r
|
$[0, -1, 0, -7533, 254437]$ |
$1$ |
trivial |
5600.q1 |
5600l1
|
5600.q |
5600l
|
$[0, 1, 0, -7533, -254437]$ |
$0$ |
trivial |
7840.j1 |
7840k1
|
7840.j |
7840k
|
$[0, -1, 0, -14765, -686363]$ |
$1$ |
trivial |
7840.u1 |
7840i1
|
7840.u |
7840i
|
$[0, 1, 0, -14765, 686363]$ |
$1$ |
trivial |
10080.bk1 |
10080bt1
|
10080.bk |
10080bt
|
$[0, 0, 0, -2712, -54416]$ |
$0$ |
trivial |
10080.bx1 |
10080ca1
|
10080.bx |
10080ca
|
$[0, 0, 0, -2712, 54416]$ |
$1$ |
trivial |
11200.v1 |
11200by1
|
11200.v |
11200by
|
$[0, -1, 0, -1883, -30863]$ |
$0$ |
trivial |
11200.cn1 |
11200cj1
|
11200.cn |
11200cj
|
$[0, 1, 0, -1883, 30863]$ |
$1$ |
trivial |
15680.bc1 |
15680cg1
|
15680.bc |
15680cg
|
$[0, -1, 0, -3691, 87641]$ |
$1$ |
trivial |
15680.ck1 |
15680cc1
|
15680.ck |
15680cc
|
$[0, 1, 0, -3691, -87641]$ |
$1$ |
trivial |
20160.o1 |
20160ds1
|
20160.o |
20160ds
|
$[0, 0, 0, -678, -6802]$ |
$1$ |
trivial |
20160.cf1 |
20160eb1
|
20160.cf |
20160eb
|
$[0, 0, 0, -678, 6802]$ |
$0$ |
trivial |
39200.u1 |
39200bw1
|
39200.u |
39200bw
|
$[0, -1, 0, -369133, 86533637]$ |
$1$ |
trivial |
39200.ch1 |
39200br1
|
39200.ch |
39200br
|
$[0, 1, 0, -369133, -86533637]$ |
$1$ |
trivial |
50400.ba1 |
50400t1
|
50400.ba |
50400t
|
$[0, 0, 0, -67800, 6802000]$ |
$0$ |
trivial |
50400.dj1 |
50400bf1
|
50400.dj |
50400bf
|
$[0, 0, 0, -67800, -6802000]$ |
$1$ |
trivial |
70560.y1 |
70560cw1
|
70560.y |
70560cw
|
$[0, 0, 0, -132888, -18664688]$ |
$0$ |
trivial |
70560.bh1 |
70560cu1
|
70560.bh |
70560cu
|
$[0, 0, 0, -132888, 18664688]$ |
$0$ |
trivial |
78400.dv1 |
78400hs1
|
78400.dv |
78400hs
|
$[0, -1, 0, -92283, -10770563]$ |
$1$ |
trivial |
78400.ht1 |
78400hd1
|
78400.ht |
78400hd
|
$[0, 1, 0, -92283, 10770563]$ |
$1$ |
trivial |
100800.ex1 |
100800ld1
|
100800.ex |
100800ld
|
$[0, 0, 0, -16950, 850250]$ |
$1$ |
trivial |
100800.li1 |
100800nc1
|
100800.li |
100800nc
|
$[0, 0, 0, -16950, -850250]$ |
$0$ |
trivial |
135520.q1 |
135520k1
|
135520.q |
135520k
|
$[0, -1, 0, -36461, 2694661]$ |
$1$ |
trivial |
135520.bj1 |
135520r1
|
135520.bj |
135520r
|
$[0, 1, 0, -36461, -2694661]$ |
$0$ |
trivial |
141120.lh1 |
141120x1
|
141120.lh |
141120x
|
$[0, 0, 0, -33222, 2333086]$ |
$1$ |
trivial |
141120.mw1 |
141120bn1
|
141120.mw |
141120bn
|
$[0, 0, 0, -33222, -2333086]$ |
$1$ |
trivial |
189280.t1 |
189280f1
|
189280.t |
189280f
|
$[0, -1, 0, -50925, -4410875]$ |
$1$ |
trivial |
189280.ca1 |
189280t1
|
189280.ca |
189280t
|
$[0, 1, 0, -50925, 4410875]$ |
$0$ |
trivial |
271040.cr1 |
271040cr1
|
271040.cr |
271040cr
|
$[0, -1, 0, -9115, -332275]$ |
$1$ |
trivial |
271040.fk1 |
271040fk1
|
271040.fk |
271040fk
|
$[0, 1, 0, -9115, 332275]$ |
$0$ |
trivial |
323680.k1 |
323680k1
|
323680.k |
323680k
|
$[0, -1, 0, -87085, 9930725]$ |
$1$ |
trivial |
323680.bn1 |
323680bn1
|
323680.bn |
323680bn
|
$[0, 1, 0, -87085, -9930725]$ |
$0$ |
trivial |
352800.fq1 |
352800fq1
|
352800.fq |
352800fq
|
$[0, 0, 0, -3322200, -2333086000]$ |
$1$ |
trivial |
352800.jk1 |
352800jk1
|
352800.jk |
352800jk
|
$[0, 0, 0, -3322200, 2333086000]$ |
$1$ |
trivial |
378560.cj1 |
378560cj1
|
378560.cj |
378560cj
|
$[0, -1, 0, -12731, 557725]$ |
$1$ |
trivial |
378560.fy1 |
378560fy1
|
378560.fy |
378560fy
|
$[0, 1, 0, -12731, -557725]$ |
$0$ |
trivial |
404320.n1 |
404320n1
|
404320.n |
404320n
|
$[0, -1, 0, -108781, -13787419]$ |
$1$ |
trivial |
404320.bo1 |
404320bo1
|
404320.bo |
404320bo
|
$[0, 1, 0, -108781, 13787419]$ |
$0$ |
trivial |
705600.uc1 |
-
|
705600.uc |
-
|
$[0, 0, 0, -830550, 291635750]$ |
$0$ |
trivial |
705600.biw1 |
-
|
705600.biw |
-
|
$[0, 0, 0, -830550, -291635750]$ |
$0$ |
trivial |