| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 222.a1 |
222e1 |
222.a |
222e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2484$ |
$1.617994$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$8.87599$ |
$[1, 1, 0, -182317, 29887645]$ |
\(y^2+xy=x^3+x^2-182317x+29887645\) |
888.2.0.? |
$[ ]$ |
| 666.g1 |
666g1 |
666.g |
666g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19872$ |
$2.167301$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$8.39000$ |
$[1, -1, 1, -1640858, -808607271]$ |
\(y^2+xy+y=x^3-x^2-1640858x-808607271\) |
888.2.0.? |
$[ ]$ |
| 1776.f1 |
1776k1 |
1776.f |
1776k |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 37 \) |
\( - 2^{35} \cdot 3^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$59616$ |
$2.311142$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$7.52085$ |
$[0, 1, 0, -2917080, -1918643436]$ |
\(y^2=x^3+x^2-2917080x-1918643436\) |
888.2.0.? |
$[ ]$ |
| 5328.v1 |
5328x1 |
5328.v |
5328x |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$476928$ |
$2.860447$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$7.32613$ |
$[0, 0, 0, -26253723, 51777119050]$ |
\(y^2=x^3-26253723x+51777119050\) |
888.2.0.? |
$[ ]$ |
| 5550.bh1 |
5550bg1 |
5550.bh |
5550bg |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$0.050481942$ |
$1$ |
|
$16$ |
$198720$ |
$2.422714$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.68218$ |
$[1, 0, 0, -4557938, 3745071492]$ |
\(y^2+xy=x^3-4557938x+3745071492\) |
888.2.0.? |
$[(1252, 574)]$ |
| 7104.m1 |
7104o1 |
7104.m |
7104o |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 37 \) |
\( - 2^{41} \cdot 3^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$476928$ |
$2.657715$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.81416$ |
$[0, -1, 0, -11668321, -15337479167]$ |
\(y^2=x^3-x^2-11668321x-15337479167\) |
888.2.0.? |
$[ ]$ |
| 7104.bb1 |
7104i1 |
7104.bb |
7104i |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 37 \) |
\( - 2^{41} \cdot 3^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$476928$ |
$2.657715$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.81416$ |
$[0, 1, 0, -11668321, 15337479167]$ |
\(y^2=x^3+x^2-11668321x+15337479167\) |
888.2.0.? |
$[ ]$ |
| 8214.i1 |
8214h1 |
8214.i |
8214h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 37^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3398112$ |
$3.423454$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$7.72385$ |
$[1, 1, 1, -249592686, 1517642768811]$ |
\(y^2+xy+y=x^3+x^2-249592686x+1517642768811\) |
888.2.0.? |
$[ ]$ |
| 10878.u1 |
10878u1 |
10878.u |
10878u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$819720$ |
$2.590950$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.41558$ |
$[1, 0, 1, -8933559, -10278262886]$ |
\(y^2+xy+y=x^3-8933559x-10278262886\) |
888.2.0.? |
$[ ]$ |
| 16650.f1 |
16650n1 |
16650.f |
16650n |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1589760$ |
$2.972019$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.60508$ |
$[1, -1, 0, -41021442, -101116930284]$ |
\(y^2+xy=x^3-x^2-41021442x-101116930284\) |
888.2.0.? |
$[ ]$ |
| 21312.a1 |
21312bx1 |
21312.a |
21312bx |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 37 \) |
\( - 2^{41} \cdot 3^{15} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1.727305461$ |
$1$ |
|
$4$ |
$3815424$ |
$3.207020$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.72442$ |
$[0, 0, 0, -105014892, 414216952400]$ |
\(y^2=x^3-105014892x+414216952400\) |
888.2.0.? |
$[(634, 589824)]$ |
| 21312.h1 |
21312q1 |
21312.h |
21312q |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 37 \) |
\( - 2^{41} \cdot 3^{15} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3815424$ |
$3.207020$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.72442$ |
$[0, 0, 0, -105014892, -414216952400]$ |
\(y^2=x^3-105014892x-414216952400\) |
888.2.0.? |
$[ ]$ |
| 24642.a1 |
24642j1 |
24642.a |
24642j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 37^{2} \) |
\( - 2^{23} \cdot 3^{15} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$27184896$ |
$3.972759$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$7.53657$ |
$[1, -1, 0, -2246334174, -40978601092076]$ |
\(y^2+xy=x^3-x^2-2246334174x-40978601092076\) |
888.2.0.? |
$[ ]$ |
| 26862.k1 |
26862q1 |
26862.k |
26862q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2955960$ |
$2.816940$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.11283$ |
$[1, 1, 1, -22060420, -39890757499]$ |
\(y^2+xy+y=x^3+x^2-22060420x-39890757499\) |
888.2.0.? |
$[ ]$ |
| 32634.bi1 |
32634ci1 |
32634.bi |
32634ci |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$0.391950290$ |
$1$ |
|
$8$ |
$6557760$ |
$3.140255$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.37165$ |
$[1, -1, 1, -80402027, 277513097915]$ |
\(y^2+xy+y=x^3-x^2-80402027x+277513097915\) |
888.2.0.? |
$[(5547, 43882)]$ |
| 37518.p1 |
37518m1 |
37518.p |
37518m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5574096$ |
$2.900467$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.01409$ |
$[1, 1, 1, -30811661, 65817214211]$ |
\(y^2+xy+y=x^3+x^2-30811661x+65817214211\) |
888.2.0.? |
$[ ]$ |
| 44400.bj1 |
44400ba1 |
44400.bj |
44400ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{9} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4769280$ |
$3.115860$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.16097$ |
$[0, -1, 0, -72927008, -239684575488]$ |
\(y^2=x^3-x^2-72927008x-239684575488\) |
888.2.0.? |
$[ ]$ |
| 64158.x1 |
64158v1 |
64158.x |
64158v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 17^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12519360$ |
$3.034599$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.86799$ |
$[1, 0, 1, -52689764, 147206827874]$ |
\(y^2+xy+y=x^3-52689764x+147206827874\) |
888.2.0.? |
$[ ]$ |
| 65712.bd1 |
65712bd1 |
65712.bd |
65712bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 37^{2} \) |
\( - 2^{35} \cdot 3^{9} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$12.08814364$ |
$1$ |
|
$0$ |
$81554688$ |
$4.116600$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$7.02580$ |
$[0, 1, 0, -3993482976, -97137124169868]$ |
\(y^2=x^3+x^2-3993482976x-97137124169868\) |
888.2.0.? |
$[(143880042/43, 632569282560/43)]$ |
| 80142.r1 |
80142w1 |
80142.r |
80142w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 19^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 19^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15693912$ |
$3.090214$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.81149$ |
$[1, 0, 0, -65816625, -205525889559]$ |
\(y^2+xy=x^3-65816625x-205525889559\) |
888.2.0.? |
$[ ]$ |
| 80586.s1 |
80586t1 |
80586.s |
80586t |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$23647680$ |
$3.366249$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.10186$ |
$[1, -1, 0, -198543780, 1076851908688]$ |
\(y^2+xy=x^3-x^2-198543780x+1076851908688\) |
888.2.0.? |
$[ ]$ |
| 87024.ca1 |
87024cx1 |
87024.ca |
87024cx |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{9} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19673280$ |
$3.284096$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.97395$ |
$[0, -1, 0, -142936936, 657808824688]$ |
\(y^2=x^3-x^2-142936936x+657808824688\) |
888.2.0.? |
$[ ]$ |
| 112554.a1 |
112554e1 |
112554.a |
112554e |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$44592768$ |
$3.449776$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.01276$ |
$[1, -1, 0, -277304949, -1777342088651]$ |
\(y^2+xy=x^3-x^2-277304949x-1777342088651\) |
888.2.0.? |
$[ ]$ |
| 117438.i1 |
117438e1 |
117438.i |
117438e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 23^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$27050760$ |
$3.185741$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.71946$ |
$[1, 1, 0, -96445968, -364607435520]$ |
\(y^2+xy=x^3+x^2-96445968x-364607435520\) |
888.2.0.? |
$[ ]$ |
| 133200.gf1 |
133200dm1 |
133200.gf |
133200dm |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{15} \cdot 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$13.51215735$ |
$1$ |
|
$0$ |
$38154240$ |
$3.665165$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.14598$ |
$[0, 0, 0, -656343075, 6472139881250]$ |
\(y^2=x^3-656343075x+6472139881250\) |
888.2.0.? |
$[(188895175/113, 10319688450/113)]$ |
| 177600.q1 |
177600hz1 |
177600.q |
177600hz |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{41} \cdot 3^{9} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38154240$ |
$3.462433$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.79844$ |
$[0, -1, 0, -291708033, 1917768311937]$ |
\(y^2=x^3-x^2-291708033x+1917768311937\) |
888.2.0.? |
$[ ]$ |
| 177600.iw1 |
177600cb1 |
177600.iw |
177600cb |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{41} \cdot 3^{9} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$38154240$ |
$3.462433$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.79844$ |
$[0, 1, 0, -291708033, -1917768311937]$ |
\(y^2=x^3+x^2-291708033x-1917768311937\) |
888.2.0.? |
$[ ]$ |
| 186702.q1 |
186702a1 |
186702.q |
186702a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 29^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 29^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$0.240606728$ |
$1$ |
|
$6$ |
$62596800$ |
$3.301640$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.61559$ |
$[1, 0, 0, -153329035, 730769720561]$ |
\(y^2+xy=x^3-153329035x+730769720561\) |
888.2.0.? |
$[(5870, 178721)]$ |
| 192474.be1 |
192474a1 |
192474.be |
192474a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 17^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$5.748055232$ |
$1$ |
|
$2$ |
$100154880$ |
$3.583908$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.87991$ |
$[1, -1, 1, -474207872, -3974584352605]$ |
\(y^2+xy+y=x^3-x^2-474207872x-3974584352605\) |
888.2.0.? |
$[(26937, 1658857)]$ |
| 197136.c1 |
197136a1 |
197136.c |
197136a |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 37^{2} \) |
\( - 2^{35} \cdot 3^{15} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$5.325827691$ |
$1$ |
|
$2$ |
$652437504$ |
$4.665909$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.93336$ |
$[0, 0, 0, -35941346787, 2622666411239650]$ |
\(y^2=x^3-35941346787x+2622666411239650\) |
888.2.0.? |
$[(587375, 429140430)]$ |
| 205350.bh1 |
205350cx1 |
205350.bh |
205350cx |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 37^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$271848960$ |
$4.228172$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.48081$ |
$[1, 0, 1, -6239817151, 189717825735698]$ |
\(y^2+xy+y=x^3-6239817151x+189717825735698\) |
888.2.0.? |
$[ ]$ |
| 213342.j1 |
213342q1 |
213342.j |
213342q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 31^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 31^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$6.101037027$ |
$1$ |
|
$2$ |
$76010400$ |
$3.334988$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.58716$ |
$[1, 0, 1, -175207138, -892660522828]$ |
\(y^2+xy+y=x^3-175207138x-892660522828\) |
888.2.0.? |
$[(68776, 17639843)]$ |
| 214896.bq1 |
214896a1 |
214896.bq |
214896a |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{9} \cdot 11^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1.503149103$ |
$1$ |
|
$4$ |
$70943040$ |
$3.510090$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.75499$ |
$[0, 1, 0, -352966720, 2552302546484]$ |
\(y^2=x^3+x^2-352966720x+2552302546484\) |
888.2.0.? |
$[(17546, 1327104)]$ |
| 240426.bg1 |
240426bg1 |
240426.bg |
240426bg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$21.22029321$ |
$1$ |
|
$0$ |
$125551296$ |
$3.639519$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.82821$ |
$[1, -1, 0, -592349625, 5549199018093]$ |
\(y^2+xy=x^3-x^2-592349625x+5549199018093\) |
888.2.0.? |
$[(61062922449/689, 14815576105076187/689)]$ |
| 261072.m1 |
261072m1 |
261072.m |
261072m |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{15} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$57.22222985$ |
$1$ |
|
$0$ |
$157386240$ |
$3.833401$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.97625$ |
$[0, 0, 0, -1286432427, -17759551834150]$ |
\(y^2=x^3-1286432427x-17759551834150\) |
888.2.0.? |
$[(3546789428716501607231994973/223983038803, 175759558725131121811128976116696815714304/223983038803)]$ |
| 262848.a1 |
262848a1 |
262848.a |
262848a |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 37^{2} \) |
\( - 2^{41} \cdot 3^{9} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$652437504$ |
$4.463173$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.57858$ |
$[0, -1, 0, -15973931905, -777081019427039]$ |
\(y^2=x^3-x^2-15973931905x-777081019427039\) |
888.2.0.? |
$[ ]$ |
| 262848.bq1 |
262848bq1 |
262848.bq |
262848bq |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 37^{2} \) |
\( - 2^{41} \cdot 3^{9} \cdot 37^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$2.449588594$ |
$1$ |
|
$6$ |
$652437504$ |
$4.463173$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.57858$ |
$[0, 1, 0, -15973931905, 777081019427039]$ |
\(y^2=x^3+x^2-15973931905x+777081019427039\) |
888.2.0.? |
$[(2807963/7, 2422407168/7), (73901, 443556)]$ |
| 271950.gr1 |
271950gr1 |
271950.gr |
271950gr |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{6} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$14.50307052$ |
$1$ |
|
$0$ |
$65577600$ |
$3.395668$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.53697$ |
$[1, 1, 1, -223338963, -1284782860719]$ |
\(y^2+xy+y=x^3+x^2-223338963x-1284782860719\) |
888.2.0.? |
$[(16183185/19, 60731012538/19)]$ |
| 300144.cn1 |
300144cn1 |
300144.cn |
300144cn |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{9} \cdot 13^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$31.39336122$ |
$1$ |
|
$0$ |
$133778304$ |
$3.593616$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.68201$ |
$[0, 1, 0, -492986576, -4213287682668]$ |
\(y^2=x^3+x^2-492986576x-4213287682668\) |
888.2.0.? |
$[(78131577305434882/1486727, 15597618692605234830950400/1486727)]$ |
| 348096.a1 |
348096a1 |
348096.a |
348096a |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 37 \) |
\( - 2^{41} \cdot 3^{9} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$157386240$ |
$3.630669$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.65086$ |
$[0, -1, 0, -571747745, -5261898849759]$ |
\(y^2=x^3-x^2-571747745x-5261898849759\) |
888.2.0.? |
$[ ]$ |
| 348096.gj1 |
348096gj1 |
348096.gj |
348096gj |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 37 \) |
\( - 2^{41} \cdot 3^{9} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$157386240$ |
$3.630669$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.65086$ |
$[0, 1, 0, -571747745, 5261898849759]$ |
\(y^2=x^3+x^2-571747745x+5261898849759\) |
888.2.0.? |
$[ ]$ |
| 352314.q1 |
352314q1 |
352314.q |
352314q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 23^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{15} \cdot 23^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$216406080$ |
$3.735046$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.74359$ |
$[1, -1, 1, -868013717, 9843532745325]$ |
\(y^2+xy+y=x^3-x^2-868013717x+9843532745325\) |
888.2.0.? |
$[ ]$ |
| 373182.i1 |
373182i1 |
373182.i |
373182i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 37 \cdot 41^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 37 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1.738812609$ |
$1$ |
|
$4$ |
$171694080$ |
$3.474781$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.47440$ |
$[1, 0, 1, -306475753, 2065096463852]$ |
\(y^2+xy+y=x^3-306475753x+2065096463852\) |
888.2.0.? |
$[(10144, 2492)]$ |
| 402486.dl1 |
402486dl1 |
402486.dl |
402486dl |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 37^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 7^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1121376960$ |
$4.396408$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$6.29930$ |
$[1, 0, 0, -12230041615, -520588159827079]$ |
\(y^2+xy=x^3-12230041615x-520588159827079\) |
888.2.0.? |
$[ ]$ |
| 410478.z1 |
410478z1 |
410478.z |
410478z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 37 \cdot 43^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 37 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$200309760$ |
$3.498592$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.45616$ |
$[1, 0, 0, -337105096, -2382344876992]$ |
\(y^2+xy=x^3-337105096x-2382344876992\) |
888.2.0.? |
$[ ]$ |
| 490398.f1 |
490398f1 |
490398.f |
490398f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 37 \cdot 47^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 37 \cdot 47^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$888$ |
$2$ |
$0$ |
$226.6619753$ |
$1$ |
|
$0$ |
$251837856$ |
$3.543068$ |
$-670206957616537490521/6109179936768$ |
$1.09597$ |
$5.42282$ |
$[1, 1, 0, -402739403, -3111079747395]$ |
\(y^2+xy=x^3+x^2-402739403x-3111079747395\) |
888.2.0.? |
$[(9550616124683680340488829358053275991732896812736706834279232964427926130016713135923287858675813115/536583244934416912281645427656505939158241156213, 688860851995986696247999383644007790573255239481084105344087808969329210948440266642499408398457873915431227011951544363565060354617153954580431963945/536583244934416912281645427656505939158241156213)]$ |