Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
1850.b1 |
1850b1 |
1850.b |
1850b |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{2} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.507639273$ |
$1$ |
|
$4$ |
$216$ |
$-0.405339$ |
$-625/2368$ |
$[1, 0, 1, -1, -12]$ |
\(y^2+xy+y=x^3-x-12\) |
148.2.0.? |
1850.n1 |
1850p1 |
1850.n |
1850p |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1080$ |
$0.399380$ |
$-625/2368$ |
$[1, 1, 1, -13, -1469]$ |
\(y^2+xy+y=x^3+x^2-13x-1469\) |
148.2.0.? |
14800.g1 |
14800bk1 |
14800.g |
14800bk |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 37 \) |
\( - 2^{18} \cdot 5^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.092527$ |
$-625/2368$ |
$[0, 1, 0, -208, 93588]$ |
\(y^2=x^3+x^2-208x+93588\) |
148.2.0.? |
14800.bf1 |
14800o1 |
14800.bf |
14800o |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 37 \) |
\( - 2^{18} \cdot 5^{2} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.287808$ |
$-625/2368$ |
$[0, -1, 0, -8, 752]$ |
\(y^2=x^3-x^2-8x+752\) |
148.2.0.? |
16650.r1 |
16650bj1 |
16650.r |
16650bj |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{8} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.600030642$ |
$1$ |
|
$16$ |
$25920$ |
$0.948686$ |
$-625/2368$ |
$[1, -1, 0, -117, 39541]$ |
\(y^2+xy=x^3-x^2-117x+39541\) |
148.2.0.? |
16650.cc1 |
16650bv1 |
16650.cc |
16650bv |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{2} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.381425408$ |
$1$ |
|
$4$ |
$5184$ |
$0.143967$ |
$-625/2368$ |
$[1, -1, 1, -5, 317]$ |
\(y^2+xy+y=x^3-x^2-5x+317\) |
148.2.0.? |
59200.s1 |
59200bp1 |
59200.s |
59200bp |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{24} \cdot 5^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$1.439100$ |
$-625/2368$ |
$[0, 1, 0, -833, -749537]$ |
\(y^2=x^3+x^2-833x-749537\) |
148.2.0.? |
59200.t1 |
59200de1 |
59200.t |
59200de |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{24} \cdot 5^{2} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.840523230$ |
$1$ |
|
$4$ |
$41472$ |
$0.634381$ |
$-625/2368$ |
$[0, 1, 0, -33, 5983]$ |
\(y^2=x^3+x^2-33x+5983\) |
148.2.0.? |
59200.dg1 |
59200bb1 |
59200.dg |
59200bb |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{24} \cdot 5^{2} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$41472$ |
$0.634381$ |
$-625/2368$ |
$[0, -1, 0, -33, -5983]$ |
\(y^2=x^3-x^2-33x-5983\) |
148.2.0.? |
59200.dh1 |
59200dm1 |
59200.dh |
59200dm |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{24} \cdot 5^{8} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1.906156928$ |
$1$ |
|
$2$ |
$207360$ |
$1.439100$ |
$-625/2368$ |
$[0, -1, 0, -833, 749537]$ |
\(y^2=x^3-x^2-833x+749537\) |
148.2.0.? |
68450.r1 |
68450t1 |
68450.r |
68450t |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37^{2} \) |
\( - 2^{6} \cdot 5^{8} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1477440$ |
$2.204838$ |
$-625/2368$ |
$[1, 1, 0, -17825, -74132875]$ |
\(y^2+xy=x^3+x^2-17825x-74132875\) |
148.2.0.? |
68450.bb1 |
68450bb1 |
68450.bb |
68450bb |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37^{2} \) |
\( - 2^{6} \cdot 5^{2} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$295488$ |
$1.400120$ |
$-625/2368$ |
$[1, 0, 0, -713, -593063]$ |
\(y^2+xy=x^3-713x-593063\) |
148.2.0.? |
90650.bl1 |
90650f1 |
90650.bl |
90650f |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$0.567616$ |
$-625/2368$ |
$[1, 1, 0, -25, 4005]$ |
\(y^2+xy=x^3+x^2-25x+4005\) |
148.2.0.? |
90650.bx1 |
90650dk1 |
90650.bx |
90650dk |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{8} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.453891186$ |
$1$ |
|
$4$ |
$414720$ |
$1.372335$ |
$-625/2368$ |
$[1, 0, 0, -638, 501892]$ |
\(y^2+xy=x^3-638x+501892\) |
148.2.0.? |
133200.dx1 |
133200t1 |
133200.dx |
133200t |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{18} \cdot 3^{6} \cdot 5^{8} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$2.847582337$ |
$1$ |
|
$2$ |
$622080$ |
$1.641832$ |
$-625/2368$ |
$[0, 0, 0, -1875, -2528750]$ |
\(y^2=x^3-1875x-2528750\) |
148.2.0.? |
133200.ea1 |
133200ct1 |
133200.ea |
133200ct |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{18} \cdot 3^{6} \cdot 5^{2} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$4.795045127$ |
$1$ |
|
$0$ |
$124416$ |
$0.837114$ |
$-625/2368$ |
$[0, 0, 0, -75, -20230]$ |
\(y^2=x^3-75x-20230\) |
148.2.0.? |
223850.bq1 |
223850dg1 |
223850.bq |
223850dg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{8} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$1.598328$ |
$-625/2368$ |
$[1, 1, 0, -1575, 1947125]$ |
\(y^2+xy=x^3+x^2-1575x+1947125\) |
148.2.0.? |
223850.cd1 |
223850i1 |
223850.cd |
223850i |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{2} \cdot 11^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$0.738311841$ |
$1$ |
|
$4$ |
$276480$ |
$0.793609$ |
$-625/2368$ |
$[1, 0, 0, -63, 15577]$ |
\(y^2+xy=x^3-63x+15577\) |
148.2.0.? |
312650.bg1 |
312650bg1 |
312650.bg |
312650bg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{8} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$1.681854$ |
$-625/2368$ |
$[1, 1, 0, -2200, -3216000]$ |
\(y^2+xy=x^3+x^2-2200x-3216000\) |
148.2.0.? |
312650.bj1 |
312650bj1 |
312650.bj |
312650bj |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{6} \cdot 5^{2} \cdot 13^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1.315072916$ |
$1$ |
|
$2$ |
$497664$ |
$0.877135$ |
$-625/2368$ |
$[1, 0, 0, -88, -25728]$ |
\(y^2+xy=x^3-88x-25728\) |
148.2.0.? |