Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
38.a2 |
38a3 |
38.a |
38a |
$3$ |
$9$ |
\( 2 \cdot 19 \) |
\( - 2^{3} \cdot 19 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.1 |
3B.1.1 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$2$ |
$18$ |
$-0.613442$ |
$-413493625/152$ |
$[1, 0, 1, -16, 22]$ |
\(y^2+xy+y=x^3-16x+22\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 152.2.0.?, 171.72.0.?, $\ldots$ |
304.c2 |
304b1 |
304.c |
304b |
$3$ |
$9$ |
\( 2^{4} \cdot 19 \) |
\( - 2^{15} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$48$ |
$0.079705$ |
$-413493625/152$ |
$[0, -1, 0, -248, -1424]$ |
\(y^2=x^3-x^2-248x-1424\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 27.36.0.a.1, 36.24.0-9.a.1.2, $\ldots$ |
342.e2 |
342a1 |
342.e |
342a |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.2 |
3B.1.2 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$-0.064137$ |
$-413493625/152$ |
$[1, -1, 1, -140, -601]$ |
\(y^2+xy+y=x^3-x^2-140x-601\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 152.2.0.?, 171.72.0.?, $\ldots$ |
722.e2 |
722e1 |
722.e |
722e |
$3$ |
$9$ |
\( 2 \cdot 19^{2} \) |
\( - 2^{3} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$0.774675563$ |
$1$ |
|
$4$ |
$720$ |
$0.858777$ |
$-413493625/152$ |
$[1, 1, 1, -5603, -163815]$ |
\(y^2+xy+y=x^3+x^2-5603x-163815\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 27.36.0.a.1, 57.8.0-3.a.1.1, $\ldots$ |
950.d2 |
950e1 |
950.d |
950e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{3} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$0.188760387$ |
$1$ |
|
$6$ |
$288$ |
$0.191276$ |
$-413493625/152$ |
$[1, 1, 1, -388, 2781]$ |
\(y^2+xy+y=x^3+x^2-388x+2781\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
1216.e2 |
1216b1 |
1216.e |
1216b |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{21} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$0.278258698$ |
$1$ |
|
$4$ |
$384$ |
$0.426278$ |
$-413493625/152$ |
$[0, -1, 0, -993, 12385]$ |
\(y^2=x^3-x^2-993x+12385\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
1216.m2 |
1216o1 |
1216.m |
1216o |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{21} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1.698405069$ |
$1$ |
|
$2$ |
$384$ |
$0.426278$ |
$-413493625/152$ |
$[0, 1, 0, -993, -12385]$ |
\(y^2=x^3+x^2-993x-12385\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
1862.b2 |
1862b1 |
1862.b |
1862b |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$756$ |
$0.359512$ |
$-413493625/152$ |
$[1, 1, 0, -760, -8392]$ |
\(y^2+xy=x^3+x^2-760x-8392\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 27.36.0.a.1, 63.24.0-9.a.1.1, $\ldots$ |
2736.n2 |
2736m1 |
2736.n |
2736m |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{15} \cdot 3^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$0.504387587$ |
$1$ |
|
$4$ |
$1440$ |
$0.629010$ |
$-413493625/152$ |
$[0, 0, 0, -2235, 40682]$ |
\(y^2=x^3-2235x+40682\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 27.36.0.a.1, 36.24.0-9.a.1.1, $\ldots$ |
4598.p2 |
4598n1 |
4598.p |
4598n |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 19 \) |
\( - 2^{3} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$2.840800951$ |
$1$ |
|
$2$ |
$2160$ |
$0.585505$ |
$-413493625/152$ |
$[1, 0, 0, -1878, -31492]$ |
\(y^2+xy=x^3-1878x-31492\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.2, 99.24.0.?, $\ldots$ |
5776.m2 |
5776l1 |
5776.m |
5776l |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \) |
\( - 2^{15} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$0.919249347$ |
$1$ |
|
$4$ |
$17280$ |
$1.551924$ |
$-413493625/152$ |
$[0, 1, 0, -89648, 10304852]$ |
\(y^2=x^3+x^2-89648x+10304852\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
6422.h2 |
6422f1 |
6422.h |
6422f |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19 \) |
\( - 2^{3} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$4104$ |
$0.669032$ |
$-413493625/152$ |
$[1, 0, 0, -2623, 51505]$ |
\(y^2+xy=x^3-2623x+51505\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.1, 117.24.0.?, $\ldots$ |
6498.f2 |
6498j1 |
6498.f |
6498j |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$0.986939083$ |
$1$ |
|
$2$ |
$21600$ |
$1.408083$ |
$-413493625/152$ |
$[1, -1, 0, -50427, 4372573]$ |
\(y^2+xy=x^3-x^2-50427x+4372573\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 27.36.0.a.1, 57.8.0-3.a.1.2, $\ldots$ |
7600.n2 |
7600l1 |
7600.n |
7600l |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \) |
\( - 2^{15} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$0.884423$ |
$-413493625/152$ |
$[0, 1, 0, -6208, -190412]$ |
\(y^2=x^3+x^2-6208x-190412\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.2, 152.2.0.?, $\ldots$ |
8550.m2 |
8550i1 |
8550.m |
8550i |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$5.646036841$ |
$1$ |
|
$0$ |
$8640$ |
$0.740582$ |
$-413493625/152$ |
$[1, -1, 0, -3492, -78584]$ |
\(y^2+xy=x^3-x^2-3492x-78584\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
10944.bf2 |
10944l1 |
10944.bf |
10944l |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{21} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.975584$ |
$-413493625/152$ |
$[0, 0, 0, -8940, -325456]$ |
\(y^2=x^3-8940x-325456\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
10944.bo2 |
10944cf1 |
10944.bo |
10944cf |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{21} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.975584$ |
$-413493625/152$ |
$[0, 0, 0, -8940, 325456]$ |
\(y^2=x^3-8940x+325456\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
10982.a2 |
10982b1 |
10982.a |
10982b |
$3$ |
$9$ |
\( 2 \cdot 17^{2} \cdot 19 \) |
\( - 2^{3} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$10080$ |
$0.803164$ |
$-413493625/152$ |
$[1, 1, 0, -4485, 113797]$ |
\(y^2+xy=x^3+x^2-4485x+113797\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.2, 152.2.0.?, $\ldots$ |
14896.x2 |
14896bd1 |
14896.x |
14896bd |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 19 \) |
\( - 2^{15} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$18144$ |
$1.052660$ |
$-413493625/152$ |
$[0, 1, 0, -12168, 512756]$ |
\(y^2=x^3+x^2-12168x+512756\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 84.8.0.?, 152.2.0.?, $\ldots$ |
16758.bg2 |
16758bc1 |
16758.bg |
16758bc |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$22680$ |
$0.908818$ |
$-413493625/152$ |
$[1, -1, 1, -6845, 219741]$ |
\(y^2+xy+y=x^3-x^2-6845x+219741\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 27.36.0.a.1, 63.24.0-9.a.1.2, $\ldots$ |
18050.j2 |
18050e1 |
18050.j |
18050e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 5^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$1.663496$ |
$-413493625/152$ |
$[1, 0, 1, -140076, -20196702]$ |
\(y^2+xy+y=x^3-140076x-20196702\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 120.8.0.?, 152.2.0.?, $\ldots$ |
20102.i2 |
20102b1 |
20102.i |
20102b |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 23^{2} \) |
\( - 2^{3} \cdot 19 \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$94392$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$24948$ |
$0.954305$ |
$-413493625/152$ |
$[1, 0, 1, -8211, -287130]$ |
\(y^2+xy+y=x^3-8211x-287130\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 69.8.0-3.a.1.2, 152.2.0.?, $\ldots$ |
23104.q2 |
23104bt1 |
23104.q |
23104bt |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{21} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1.083080177$ |
$1$ |
|
$2$ |
$138240$ |
$1.898499$ |
$-413493625/152$ |
$[0, -1, 0, -358593, 82797409]$ |
\(y^2=x^3-x^2-358593x+82797409\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 27.36.0.a.1, 36.24.0-9.a.1.4, $\ldots$ |
23104.bj2 |
23104l1 |
23104.bj |
23104l |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{21} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$138240$ |
$1.898499$ |
$-413493625/152$ |
$[0, 1, 0, -358593, -82797409]$ |
\(y^2=x^3+x^2-358593x-82797409\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 27.36.0.a.1, $\ldots$ |
30400.q2 |
30400br1 |
30400.q |
30400br |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{21} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$4.519235595$ |
$1$ |
|
$2$ |
$55296$ |
$1.230997$ |
$-413493625/152$ |
$[0, -1, 0, -24833, -1498463]$ |
\(y^2=x^3-x^2-24833x-1498463\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 120.8.0.?, 152.2.0.?, $\ldots$ |
30400.bl2 |
30400d1 |
30400.bl |
30400d |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{21} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$2.084617300$ |
$1$ |
|
$2$ |
$55296$ |
$1.230997$ |
$-413493625/152$ |
$[0, 1, 0, -24833, 1498463]$ |
\(y^2=x^3+x^2-24833x+1498463\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 120.8.0.?, 152.2.0.?, $\ldots$ |
31958.j2 |
31958h1 |
31958.j |
31958h |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 29^{2} \) |
\( - 2^{3} \cdot 19 \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$119016$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$45864$ |
$1.070206$ |
$-413493625/152$ |
$[1, 1, 1, -13053, 568747]$ |
\(y^2+xy+y=x^3+x^2-13053x+568747\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 87.8.0.?, 152.2.0.?, $\ldots$ |
35378.n2 |
35378o1 |
35378.n |
35378o |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 7^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$272160$ |
$1.831732$ |
$-413493625/152$ |
$[1, 0, 0, -274548, 55364840]$ |
\(y^2+xy=x^3-274548x+55364840\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 168.8.0.?, $\ldots$ |
36518.a2 |
36518a1 |
36518.a |
36518a |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 31^{2} \) |
\( - 2^{3} \cdot 19 \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$127224$ |
$1296$ |
$43$ |
$5.984886784$ |
$1$ |
|
$0$ |
$60480$ |
$1.103552$ |
$-413493625/152$ |
$[1, 1, 0, -14915, -707579]$ |
\(y^2+xy=x^3+x^2-14915x-707579\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 93.8.0.?, 152.2.0.?, $\ldots$ |
36784.j2 |
36784bh1 |
36784.j |
36784bh |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 19 \) |
\( - 2^{15} \cdot 11^{6} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$1.031385091$ |
$1$ |
|
$14$ |
$51840$ |
$1.278652$ |
$-413493625/152$ |
$[0, -1, 0, -30048, 2015488]$ |
\(y^2=x^3-x^2-30048x+2015488\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 132.8.0.?, 152.2.0.?, $\ldots$ |
41382.p2 |
41382m1 |
41382.p |
41382m |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$2.035533400$ |
$1$ |
|
$2$ |
$64800$ |
$1.134811$ |
$-413493625/152$ |
$[1, -1, 0, -16902, 850284]$ |
\(y^2+xy=x^3-x^2-16902x+850284\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, $\ldots$ |
46550.cs2 |
46550ca1 |
46550.cs |
46550ca |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{3} \cdot 5^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$143640$ |
$1296$ |
$43$ |
$8.535470701$ |
$1$ |
|
$0$ |
$108864$ |
$1.164232$ |
$-413493625/152$ |
$[1, 0, 0, -19013, -1010983]$ |
\(y^2+xy=x^3-19013x-1010983\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 105.8.0.?, 152.2.0.?, $\ldots$ |
51376.i2 |
51376v1 |
51376.i |
51376v |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{15} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$4.871435753$ |
$1$ |
|
$2$ |
$98496$ |
$1.362179$ |
$-413493625/152$ |
$[0, -1, 0, -41968, -3296320]$ |
\(y^2=x^3-x^2-41968x-3296320\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 156.8.0.?, $\ldots$ |
51984.bn2 |
51984ci1 |
51984.bn |
51984ci |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$518400$ |
$2.101231$ |
$-413493625/152$ |
$[0, 0, 0, -806835, -279037838]$ |
\(y^2=x^3-806835x-279037838\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
52022.l2 |
52022i1 |
52022.l |
52022i |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 37^{2} \) |
\( - 2^{3} \cdot 19 \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$151848$ |
$1296$ |
$43$ |
$1.317109903$ |
$1$ |
|
$4$ |
$103680$ |
$1.192017$ |
$-413493625/152$ |
$[1, 0, 0, -21248, 1190744]$ |
\(y^2+xy=x^3-21248x+1190744\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 111.8.0.?, 152.2.0.?, $\ldots$ |
57798.o2 |
57798h1 |
57798.o |
57798h |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$123120$ |
$1.218338$ |
$-413493625/152$ |
$[1, -1, 0, -23607, -1390635]$ |
\(y^2+xy=x^3-x^2-23607x-1390635\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.2, 117.24.0.?, $\ldots$ |
59584.z2 |
59584cl1 |
59584.z |
59584cl |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{21} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1.118885022$ |
$1$ |
|
$4$ |
$145152$ |
$1.399233$ |
$-413493625/152$ |
$[0, -1, 0, -48673, 4150721]$ |
\(y^2=x^3-x^2-48673x+4150721\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 168.8.0.?, $\ldots$ |
59584.cf2 |
59584bg1 |
59584.cf |
59584bg |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{21} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$12.95837681$ |
$1$ |
|
$0$ |
$145152$ |
$1.399233$ |
$-413493625/152$ |
$[0, 1, 0, -48673, -4150721]$ |
\(y^2=x^3+x^2-48673x-4150721\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 168.8.0.?, $\ldots$ |
63878.b2 |
63878c1 |
63878.b |
63878c |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 41^{2} \) |
\( - 2^{3} \cdot 19 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$168264$ |
$1296$ |
$43$ |
$1.848665624$ |
$1$ |
|
$0$ |
$141120$ |
$1.243343$ |
$-413493625/152$ |
$[1, 1, 0, -26090, 1611724]$ |
\(y^2+xy=x^3+x^2-26090x+1611724\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 123.8.0.?, 152.2.0.?, $\ldots$ |
68400.cd2 |
68400ee1 |
68400.cd |
68400ee |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$1.424843155$ |
$1$ |
|
$4$ |
$207360$ |
$1.433729$ |
$-413493625/152$ |
$[0, 0, 0, -55875, 5085250]$ |
\(y^2=x^3-55875x+5085250\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.1, 152.2.0.?, $\ldots$ |
70262.g2 |
70262f1 |
70262.g |
70262f |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 43^{2} \) |
\( - 2^{3} \cdot 19 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$176472$ |
$1296$ |
$43$ |
$6.710589815$ |
$1$ |
|
$0$ |
$157248$ |
$1.267157$ |
$-413493625/152$ |
$[1, 1, 1, -28698, -1883777]$ |
\(y^2+xy+y=x^3+x^2-28698x-1883777\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 129.8.0.?, 152.2.0.?, $\ldots$ |
83942.c2 |
83942a1 |
83942.c |
83942a |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 47^{2} \) |
\( - 2^{3} \cdot 19 \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$192888$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$211968$ |
$1.311630$ |
$-413493625/152$ |
$[1, 0, 1, -34286, -2447144]$ |
\(y^2+xy+y=x^3-34286x-2447144\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 141.8.0.?, 152.2.0.?, $\ldots$ |
87362.g2 |
87362q1 |
87362.g |
87362q |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 11^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$2.568822190$ |
$1$ |
|
$2$ |
$777600$ |
$2.057724$ |
$-413493625/152$ |
$[1, 1, 0, -677965, 214647701]$ |
\(y^2+xy=x^3+x^2-677965x+214647701\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
87856.n2 |
87856g1 |
87856.n |
87856g |
$3$ |
$9$ |
\( 2^{4} \cdot 17^{2} \cdot 19 \) |
\( - 2^{15} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$1.496311$ |
$-413493625/152$ |
$[0, 1, 0, -71768, -7426540]$ |
\(y^2=x^3+x^2-71768x-7426540\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
98838.bh2 |
98838bl1 |
98838.bh |
98838bl |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69768$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$302400$ |
$1.352470$ |
$-413493625/152$ |
$[1, -1, 1, -40370, -3112887]$ |
\(y^2+xy+y=x^3-x^2-40370x-3112887\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.1, 152.2.0.?, $\ldots$ |
106742.k2 |
106742g1 |
106742.k |
106742g |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 53^{2} \) |
\( - 2^{3} \cdot 19 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$217512$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$302328$ |
$1.371704$ |
$-413493625/152$ |
$[1, 1, 1, -43598, 3486819]$ |
\(y^2+xy+y=x^3+x^2-43598x+3486819\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 159.8.0.?, $\ldots$ |
114950.m2 |
114950m1 |
114950.m |
114950m |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{3} \cdot 5^{6} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$225720$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$1.390224$ |
$-413493625/152$ |
$[1, 1, 0, -46950, -3936500]$ |
\(y^2+xy=x^3+x^2-46950x-3936500\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 165.8.0.?, $\ldots$ |
122018.f2 |
122018j1 |
122018.f |
122018j |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{3} \cdot 13^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1477440$ |
$2.141251$ |
$-413493625/152$ |
$[1, 1, 0, -946910, -355166612]$ |
\(y^2+xy=x^3+x^2-946910x-355166612\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
132278.g2 |
132278b1 |
132278.g |
132278b |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 59^{2} \) |
\( - 2^{3} \cdot 19 \cdot 59^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$242136$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$408204$ |
$1.425325$ |
$-413493625/152$ |
$[1, 0, 0, -54028, -4839704]$ |
\(y^2+xy=x^3-54028x-4839704\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
134064.co2 |
134064bg1 |
134064.co |
134064bg |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{15} \cdot 3^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$8.847701190$ |
$1$ |
|
$0$ |
$544320$ |
$1.601965$ |
$-413493625/152$ |
$[0, 0, 0, -109515, -13953926]$ |
\(y^2=x^3-109515x-13953926\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 84.8.0.?, 152.2.0.?, $\ldots$ |