Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2760.i1 |
2760i1 |
2760.i |
2760i |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.181699752$ |
$1$ |
|
$6$ |
$768$ |
$0.098748$ |
$-3525581824/9315$ |
$[0, 1, 0, -201, 1035]$ |
\(y^2=x^3+x^2-201x+1035\) |
5520.c1 |
5520b1 |
5520.c |
5520b |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1536$ |
$0.098748$ |
$-3525581824/9315$ |
$[0, -1, 0, -201, -1035]$ |
\(y^2=x^3-x^2-201x-1035\) |
8280.u1 |
8280n1 |
8280.u |
8280n |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5 \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$6144$ |
$0.648054$ |
$-3525581824/9315$ |
$[0, 0, 0, -1812, -29756]$ |
\(y^2=x^3-1812x-29756\) |
13800.a1 |
13800h1 |
13800.a |
13800h |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{7} \cdot 23 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.145070348$ |
$1$ |
|
$28$ |
$18432$ |
$0.903467$ |
$-3525581824/9315$ |
$[0, -1, 0, -5033, 139437]$ |
\(y^2=x^3-x^2-5033x+139437\) |
16560.bg1 |
16560t1 |
16560.bg |
16560t |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5 \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.393182567$ |
$1$ |
|
$2$ |
$12288$ |
$0.648054$ |
$-3525581824/9315$ |
$[0, 0, 0, -1812, 29756]$ |
\(y^2=x^3-1812x+29756\) |
22080.bl1 |
22080p1 |
22080.bl |
22080p |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5 \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$12288$ |
$0.445322$ |
$-3525581824/9315$ |
$[0, -1, 0, -805, 9085]$ |
\(y^2=x^3-x^2-805x+9085\) |
22080.cl1 |
22080db1 |
22080.cl |
22080db |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5 \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.178374136$ |
$1$ |
|
$2$ |
$12288$ |
$0.445322$ |
$-3525581824/9315$ |
$[0, 1, 0, -805, -9085]$ |
\(y^2=x^3+x^2-805x-9085\) |
27600.df1 |
27600w1 |
27600.df |
27600w |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{7} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$36864$ |
$0.903467$ |
$-3525581824/9315$ |
$[0, 1, 0, -5033, -139437]$ |
\(y^2=x^3+x^2-5033x-139437\) |
41400.l1 |
41400bt1 |
41400.l |
41400bt |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{7} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.515584891$ |
$1$ |
|
$2$ |
$147456$ |
$1.452774$ |
$-3525581824/9315$ |
$[0, 0, 0, -45300, -3719500]$ |
\(y^2=x^3-45300x-3719500\) |
63480.t1 |
63480w1 |
63480.t |
63480w |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.852889725$ |
$1$ |
|
$2$ |
$405504$ |
$1.666496$ |
$-3525581824/9315$ |
$[0, 1, 0, -106505, -13444437]$ |
\(y^2=x^3+x^2-106505x-13444437\) |
66240.o1 |
66240ep1 |
66240.o |
66240ep |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5 \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.413502782$ |
$1$ |
|
$2$ |
$98304$ |
$0.994628$ |
$-3525581824/9315$ |
$[0, 0, 0, -7248, 238048]$ |
\(y^2=x^3-7248x+238048\) |
66240.ct1 |
66240cb1 |
66240.ct |
66240cb |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5 \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$11.37908672$ |
$1$ |
|
$0$ |
$98304$ |
$0.994628$ |
$-3525581824/9315$ |
$[0, 0, 0, -7248, -238048]$ |
\(y^2=x^3-7248x-238048\) |
82800.ew1 |
82800bm1 |
82800.ew |
82800bm |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{7} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.909243246$ |
$1$ |
|
$2$ |
$294912$ |
$1.452774$ |
$-3525581824/9315$ |
$[0, 0, 0, -45300, 3719500]$ |
\(y^2=x^3-45300x+3719500\) |
110400.dy1 |
110400fv1 |
110400.dy |
110400fv |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5^{7} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$294912$ |
$1.250040$ |
$-3525581824/9315$ |
$[0, -1, 0, -20133, -1095363]$ |
\(y^2=x^3-x^2-20133x-1095363\) |
110400.fv1 |
110400eh1 |
110400.fv |
110400eh |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{14} \cdot 3^{4} \cdot 5^{7} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.313502281$ |
$1$ |
|
$2$ |
$294912$ |
$1.250040$ |
$-3525581824/9315$ |
$[0, 1, 0, -20133, 1095363]$ |
\(y^2=x^3+x^2-20133x+1095363\) |
126960.bp1 |
126960k1 |
126960.bp |
126960k |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.175182471$ |
$1$ |
|
$2$ |
$811008$ |
$1.666496$ |
$-3525581824/9315$ |
$[0, -1, 0, -106505, 13444437]$ |
\(y^2=x^3-x^2-106505x+13444437\) |
135240.t1 |
135240bb1 |
135240.t |
135240bb |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{6} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$253440$ |
$1.071703$ |
$-3525581824/9315$ |
$[0, -1, 0, -9865, -374723]$ |
\(y^2=x^3-x^2-9865x-374723\) |
190440.e1 |
190440bg1 |
190440.e |
190440bg |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{10} \cdot 5 \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.451224138$ |
$1$ |
|
$6$ |
$3244032$ |
$2.215801$ |
$-3525581824/9315$ |
$[0, 0, 0, -958548, 362041252]$ |
\(y^2=x^3-958548x+362041252\) |
270480.ju1 |
270480ju1 |
270480.ju |
270480ju |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 7^{6} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.094011046$ |
$1$ |
|
$2$ |
$506880$ |
$1.071703$ |
$-3525581824/9315$ |
$[0, 1, 0, -9865, 374723]$ |
\(y^2=x^3+x^2-9865x+374723\) |
317400.bf1 |
317400bf1 |
317400.bf |
317400bf |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{7} \cdot 23^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$9732096$ |
$2.471214$ |
$-3525581824/9315$ |
$[0, -1, 0, -2662633, -1675229363]$ |
\(y^2=x^3-x^2-2662633x-1675229363\) |
331200.bw1 |
331200bw1 |
331200.bw |
331200bw |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{7} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2359296$ |
$1.799347$ |
$-3525581824/9315$ |
$[0, 0, 0, -181200, -29756000]$ |
\(y^2=x^3-181200x-29756000\) |
331200.pf1 |
331200pf1 |
331200.pf |
331200pf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{14} \cdot 3^{10} \cdot 5^{7} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2359296$ |
$1.799347$ |
$-3525581824/9315$ |
$[0, 0, 0, -181200, 29756000]$ |
\(y^2=x^3-181200x+29756000\) |
333960.cg1 |
333960cg1 |
333960.cg |
333960cg |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 11^{6} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.397507281$ |
$1$ |
|
$4$ |
$829440$ |
$1.297695$ |
$-3525581824/9315$ |
$[0, 1, 0, -24361, -1474981]$ |
\(y^2=x^3+x^2-24361x-1474981\) |
380880.da1 |
380880da1 |
380880.da |
380880da |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{10} \cdot 5 \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$34.57191081$ |
$1$ |
|
$0$ |
$6488064$ |
$2.215801$ |
$-3525581824/9315$ |
$[0, 0, 0, -958548, -362041252]$ |
\(y^2=x^3-958548x-362041252\) |
405720.dm1 |
405720dm1 |
405720.dm |
405720dm |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5 \cdot 7^{6} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2027520$ |
$1.621010$ |
$-3525581824/9315$ |
$[0, 0, 0, -88788, 10206308]$ |
\(y^2=x^3-88788x+10206308\) |
466440.bz1 |
466440bz1 |
466440.bz |
466440bz |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 23 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 13^{6} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.546230641$ |
$1$ |
|
$4$ |
$1769472$ |
$1.381224$ |
$-3525581824/9315$ |
$[0, 1, 0, -34025, 2409915]$ |
\(y^2=x^3+x^2-34025x+2409915\) |