Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
4641.a1 |
4641f1 |
4641.a |
4641f |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.748684411$ |
$1$ |
|
$4$ |
$2208$ |
$0.138159$ |
$-325660672/40000779$ |
$[0, 1, 1, -14, -310]$ |
\(y^2+y=x^3+x^2-14x-310\) |
13923.l1 |
13923k1 |
13923.l |
13923k |
$1$ |
$1$ |
\( 3^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$17664$ |
$0.687466$ |
$-325660672/40000779$ |
$[0, 0, 1, -129, 8235]$ |
\(y^2+y=x^3-129x+8235\) |
32487.a1 |
32487i1 |
32487.a |
32487i |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7^{7} \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.099161187$ |
$1$ |
|
$32$ |
$105984$ |
$1.111115$ |
$-325660672/40000779$ |
$[0, -1, 1, -702, 104852]$ |
\(y^2+y=x^3-x^2-702x+104852\) |
60333.p1 |
60333j1 |
60333.p |
60333j |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 3^{2} \cdot 7 \cdot 13^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$370944$ |
$1.420633$ |
$-325660672/40000779$ |
$[0, 1, 1, -2422, -670913]$ |
\(y^2+y=x^3+x^2-2422x-670913\) |
74256.bs1 |
74256bj1 |
74256.bs |
74256bj |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{2} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$88320$ |
$0.831306$ |
$-325660672/40000779$ |
$[0, -1, 0, -229, 19597]$ |
\(y^2=x^3-x^2-229x+19597\) |
78897.a1 |
78897a1 |
78897.a |
78897a |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 3^{2} \cdot 7 \cdot 13^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.342159669$ |
$1$ |
|
$2$ |
$635904$ |
$1.554766$ |
$-325660672/40000779$ |
$[0, -1, 1, -4142, -1497130]$ |
\(y^2+y=x^3-x^2-4142x-1497130\) |
97461.y1 |
97461s1 |
97461.y |
97461s |
$1$ |
$1$ |
\( 3^{2} \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 7^{7} \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$847872$ |
$1.660421$ |
$-325660672/40000779$ |
$[0, 0, 1, -6321, -2824691]$ |
\(y^2+y=x^3-6321x-2824691\) |
116025.bt1 |
116025h1 |
116025.bt |
116025h |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 5^{6} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.857057284$ |
$1$ |
|
$0$ |
$238464$ |
$0.942879$ |
$-325660672/40000779$ |
$[0, -1, 1, -358, -38007]$ |
\(y^2+y=x^3-x^2-358x-38007\) |
180999.c1 |
180999c1 |
180999.c |
180999c |
$1$ |
$1$ |
\( 3^{2} \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 3^{8} \cdot 7 \cdot 13^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.870141848$ |
$1$ |
|
$4$ |
$2967552$ |
$1.969940$ |
$-325660672/40000779$ |
$[0, 0, 1, -21801, 18092844]$ |
\(y^2+y=x^3-21801x+18092844\) |
222768.i1 |
222768j1 |
222768.i |
222768j |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{8} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$706560$ |
$1.380613$ |
$-325660672/40000779$ |
$[0, 0, 0, -2064, -527056]$ |
\(y^2=x^3-2064x-527056\) |
236691.bc1 |
236691bc1 |
236691.bc |
236691bc |
$1$ |
$1$ |
\( 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 3^{8} \cdot 7 \cdot 13^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$5087232$ |
$2.104073$ |
$-325660672/40000779$ |
$[0, 0, 1, -37281, 40459783]$ |
\(y^2+y=x^3-37281x+40459783\) |
297024.k1 |
297024k1 |
297024.k |
297024k |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{6} \cdot 3^{2} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.720463005$ |
$1$ |
|
$2$ |
$176640$ |
$0.484733$ |
$-325660672/40000779$ |
$[0, -1, 0, -57, -2421]$ |
\(y^2=x^3-x^2-57x-2421\) |
297024.eb1 |
297024eb1 |
297024.eb |
297024eb |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{6} \cdot 3^{2} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.930033883$ |
$1$ |
|
$6$ |
$176640$ |
$0.484733$ |
$-325660672/40000779$ |
$[0, 1, 0, -57, 2421]$ |
\(y^2=x^3+x^2-57x+2421\) |
348075.f1 |
348075f1 |
348075.f |
348075f |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 5^{6} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.870578516$ |
$1$ |
|
$4$ |
$1907712$ |
$1.492184$ |
$-325660672/40000779$ |
$[0, 0, 1, -3225, 1029406]$ |
\(y^2+y=x^3-3225x+1029406\) |
422331.bz1 |
422331bz1 |
422331.bz |
422331bz |
$1$ |
$1$ |
\( 3 \cdot 7^{2} \cdot 13^{2} \cdot 17 \) |
\( - 3^{2} \cdot 7^{7} \cdot 13^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7.492930842$ |
$1$ |
|
$0$ |
$17805312$ |
$2.393589$ |
$-325660672/40000779$ |
$[0, -1, 1, -118694, 229885697]$ |
\(y^2+y=x^3-x^2-118694x+229885697\) |