| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 14450.b2 |
14450p1 |
14450.b |
14450p |
$2$ |
$17$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{3} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$0.667865508$ |
$1$ |
|
$4$ |
$12240$ |
$0.586384$ |
$-297756989/2$ |
$0.98541$ |
$3.72429$ |
$[1, 0, 1, -3041, 64278]$ |
\(y^2+xy+y=x^3-3041x+64278\) |
17.72.1.b.1, 40.2.0.a.1, 85.288.5.?, 136.144.5.?, 680.576.17.? |
$[(32, -14)]$ |
| 14450.o1 |
14450n2 |
14450.o |
14450n |
$2$ |
$17$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{3} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$208080$ |
$2.002991$ |
$-297756989/2$ |
$0.98541$ |
$5.49904$ |
$[1, 1, 0, -878710, 316677750]$ |
\(y^2+xy=x^3+x^2-878710x+316677750\) |
17.72.1.b.1, 40.2.0.a.1, 85.288.5.?, 136.144.5.?, 680.576.17.? |
$[ ]$ |
| 14450.w1 |
14450bk2 |
14450.w |
14450bk |
$2$ |
$17$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{9} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$13.04840871$ |
$1$ |
|
$0$ |
$1040400$ |
$2.807709$ |
$-297756989/2$ |
$0.98541$ |
$6.50720$ |
$[1, 0, 0, -21967763, 39628654267]$ |
\(y^2+xy=x^3-21967763x+39628654267\) |
17.72.1.b.1, 40.2.0.a.1, 85.288.5.?, 136.144.5.?, 680.576.17.? |
$[(18872667/86, 7946771069/86)]$ |
| 14450.bh2 |
14450bl1 |
14450.bh |
14450bl |
$2$ |
$17$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 5^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$61200$ |
$1.391104$ |
$-297756989/2$ |
$0.98541$ |
$4.73246$ |
$[1, 1, 1, -76013, 8034781]$ |
\(y^2+xy+y=x^3+x^2-76013x+8034781\) |
17.72.1.b.1, 40.2.0.a.1, 85.288.5.?, 136.144.5.?, 680.576.17.? |
$[ ]$ |
| 115600.r2 |
115600dh1 |
115600.r |
115600dh |
$2$ |
$17$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$1468800$ |
$2.084251$ |
$-297756989/2$ |
$0.98541$ |
$4.60181$ |
$[0, 1, 0, -1216208, -516658412]$ |
\(y^2=x^3+x^2-1216208x-516658412\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[ ]$ |
| 115600.s1 |
115600dc2 |
115600.s |
115600dc |
$2$ |
$17$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{3} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$18.18639528$ |
$1$ |
|
$0$ |
$4993920$ |
$2.696136$ |
$-297756989/2$ |
$0.98541$ |
$5.23165$ |
$[0, 1, 0, -14059368, -20295494732]$ |
\(y^2=x^3+x^2-14059368x-20295494732\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[(762511878/191, 20690852792440/191)]$ |
| 115600.co2 |
115600dg1 |
115600.co |
115600dg |
$2$ |
$17$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{3} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$293760$ |
$1.279531$ |
$-297756989/2$ |
$0.98541$ |
$3.77347$ |
$[0, -1, 0, -48648, -4113808]$ |
\(y^2=x^3-x^2-48648x-4113808\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[ ]$ |
| 115600.cp1 |
115600db2 |
115600.cp |
115600db |
$2$ |
$17$ |
\( 2^{4} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{13} \cdot 5^{9} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$152.7982335$ |
$1$ |
|
$0$ |
$24969600$ |
$3.500858$ |
$-297756989/2$ |
$0.98541$ |
$6.05998$ |
$[0, -1, 0, -351484208, -2536233873088]$ |
\(y^2=x^3-x^2-351484208x-2536233873088\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[(47510227900185248924318325079811519400221555772033286913354941805962/18358284172932223995621738362631, 324417121543696065469974647059538075330665567204817556061332538390141277222643560153670981417533616250/18358284172932223995621738362631)]$ |
| 130050.o2 |
130050dq1 |
130050.o |
130050dq |
$2$ |
$17$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$2040$ |
$576$ |
$17$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1468800$ |
$1.940409$ |
$-297756989/2$ |
$0.98541$ |
$4.40920$ |
$[1, -1, 0, -684117, -217623209]$ |
\(y^2+xy=x^3-x^2-684117x-217623209\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 255.288.5.?, $\ldots$ |
$[ ]$ |
| 130050.dh1 |
130050eg2 |
130050.dh |
130050eg |
$2$ |
$17$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{9} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$2040$ |
$576$ |
$17$ |
$82.42856852$ |
$1$ |
|
$0$ |
$24969600$ |
$3.357018$ |
$-297756989/2$ |
$0.98541$ |
$5.85279$ |
$[1, -1, 0, -197709867, -1069973665209]$ |
\(y^2+xy=x^3-x^2-197709867x-1069973665209\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 255.288.5.?, $\ldots$ |
$[(1830308980919149212319230892331233395/2604069476882491, 2470388740920564066741575617756943306334841071285306519/2604069476882491)]$ |
| 130050.em1 |
130050e2 |
130050.em |
130050e |
$2$ |
$17$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{3} \cdot 17^{10} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$2040$ |
$576$ |
$17$ |
$95.94021999$ |
$1$ |
|
$0$ |
$4993920$ |
$2.552296$ |
$-297756989/2$ |
$0.98541$ |
$5.03274$ |
$[1, -1, 1, -7908395, -8558207643]$ |
\(y^2+xy+y=x^3-x^2-7908395x-8558207643\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 255.288.5.?, $\ldots$ |
$[(36111/2, 6442155/2), (141935/2, 53157123/2)]$ |
| 130050.gu2 |
130050v1 |
130050.gu |
130050v |
$2$ |
$17$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{3} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$2040$ |
$576$ |
$17$ |
$5.408288407$ |
$1$ |
|
$0$ |
$293760$ |
$1.135691$ |
$-297756989/2$ |
$0.98541$ |
$3.58915$ |
$[1, -1, 1, -27365, -1735513]$ |
\(y^2+xy+y=x^3-x^2-27365x-1735513\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 255.288.5.?, $\ldots$ |
$[(4047/2, 249623/2)]$ |
| 462400.v1 |
462400v2 |
462400.v |
462400v |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$28.50836818$ |
$1$ |
|
$0$ |
$199756800$ |
$3.847431$ |
$-297756989/2$ |
$0.98541$ |
$5.73478$ |
$[0, 1, 0, -1405936833, -20291276921537]$ |
\(y^2=x^3+x^2-1405936833x-20291276921537\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 170.288.5.?, $\ldots$ |
$[(20885140732727/9589, 94052551871002009952/9589)]$ |
| 462400.w2 |
462400w1 |
462400.w |
462400w |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1.106856280$ |
$1$ |
|
$2$ |
$11750400$ |
$2.430824$ |
$-297756989/2$ |
$0.98541$ |
$4.43157$ |
$[0, 1, 0, -4864833, 4128402463]$ |
\(y^2=x^3+x^2-4864833x+4128402463\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[(1133, 8500)]$ |
| 462400.x2 |
462400x1 |
462400.x |
462400x |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$2350080$ |
$1.626104$ |
$-297756989/2$ |
$0.98541$ |
$3.69127$ |
$[0, 1, 0, -194593, -33105057]$ |
\(y^2=x^3+x^2-194593x-33105057\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 170.288.5.?, $\ldots$ |
$[ ]$ |
| 462400.y1 |
462400y2 |
462400.y |
462400y |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$39951360$ |
$3.042713$ |
$-297756989/2$ |
$0.98541$ |
$4.99448$ |
$[0, 1, 0, -56237473, 162307720383]$ |
\(y^2=x^3+x^2-56237473x+162307720383\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[ ]$ |
| 462400.io1 |
462400io2 |
462400.io |
462400io |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$119.4876741$ |
$1$ |
|
$0$ |
$39951360$ |
$3.042713$ |
$-297756989/2$ |
$0.98541$ |
$4.99448$ |
$[0, -1, 0, -56237473, -162307720383]$ |
\(y^2=x^3-x^2-56237473x-162307720383\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 170.288.5.?, $\ldots$ |
$[(16995726638348652235034526921931118648011465190777368/331397815640159854079133, 2213034327595222743786709635730960615820169674589079598523926665835227118678785/331397815640159854079133)]$ |
| 462400.ip2 |
462400ip1 |
462400.ip |
462400ip |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{3} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$2.928931833$ |
$1$ |
|
$2$ |
$2350080$ |
$1.626104$ |
$-297756989/2$ |
$0.98541$ |
$3.69127$ |
$[0, -1, 0, -194593, 33105057]$ |
\(y^2=x^3-x^2-194593x+33105057\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[(537, 9120)]$ |
| 462400.iq2 |
462400iq1 |
462400.iq |
462400iq |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$4$ |
$2$ |
$0$ |
$11750400$ |
$2.430824$ |
$-297756989/2$ |
$0.98541$ |
$4.43157$ |
$[0, -1, 0, -4864833, -4128402463]$ |
\(y^2=x^3-x^2-4864833x-4128402463\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 170.288.5.?, $\ldots$ |
$[ ]$ |
| 462400.ir1 |
462400ir2 |
462400.ir |
462400ir |
$2$ |
$17$ |
\( 2^{6} \cdot 5^{2} \cdot 17^{2} \) |
\( - 2^{19} \cdot 5^{9} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$17$ |
17.72.1.4 |
17B.4.6 |
$680$ |
$576$ |
$17$ |
$1$ |
$9$ |
$3$ |
$0$ |
$199756800$ |
$3.847431$ |
$-297756989/2$ |
$0.98541$ |
$5.73478$ |
$[0, -1, 0, -1405936833, 20291276921537]$ |
\(y^2=x^3-x^2-1405936833x+20291276921537\) |
17.72.1.b.1, 40.2.0.a.1, 85.144.5.?, 136.144.5.?, 340.288.5.?, $\ldots$ |
$[ ]$ |