Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
147.b2 |
147c1 |
147.b |
147c |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3 \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.845087$ |
$-28672/3$ |
$[0, -1, 1, -2, -1]$ |
\(y^2+y=x^3-x^2-2x-1\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.168.2.?, 546.336.9.? |
147.c2 |
147b1 |
147.c |
147b |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.56.0.1 |
13B.3.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$42$ |
$0.127867$ |
$-28672/3$ |
$[0, 1, 1, -114, 473]$ |
\(y^2+y=x^3+x^2-114x+473\) |
6.2.0.a.1, 13.56.0-13.a.1.1, 78.112.1.?, 91.168.2.?, 546.336.9.? |
441.a2 |
441f1 |
441.a |
441f |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$0.076270034$ |
$1$ |
|
$10$ |
$48$ |
$-0.295781$ |
$-28672/3$ |
$[0, 0, 1, -21, 40]$ |
\(y^2+y=x^3-21x+40\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 182.168.2.?, $\ldots$ |
441.b2 |
441e1 |
441.b |
441e |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$336$ |
$0.677174$ |
$-28672/3$ |
$[0, 0, 1, -1029, -13806]$ |
\(y^2+y=x^3-1029x-13806\) |
6.2.0.a.1, 13.28.0.a.1, 26.56.0-13.a.1.1, 39.56.0-13.a.1.1, 78.112.1.?, $\ldots$ |
2352.d2 |
2352j1 |
2352.d |
2352j |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \) |
\( - 2^{12} \cdot 3 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$1092$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1680$ |
$0.821014$ |
$-28672/3$ |
$[0, -1, 0, -1829, -32115]$ |
\(y^2=x^3-x^2-1829x-32115\) |
6.2.0.a.1, 13.28.0.a.1, 52.56.0-13.a.1.1, 78.56.1.?, 91.84.2.?, $\ldots$ |
2352.w2 |
2352u1 |
2352.w |
2352u |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \) |
\( - 2^{12} \cdot 3 \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$1092$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$-0.151940$ |
$-28672/3$ |
$[0, 1, 0, -37, 83]$ |
\(y^2=x^3+x^2-37x+83\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 364.168.2.?, $\ldots$ |
3675.a2 |
3675d1 |
3675.a |
3675d |
$2$ |
$13$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 3 \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2730$ |
$336$ |
$9$ |
$0.258046207$ |
$1$ |
|
$6$ |
$5376$ |
$0.932587$ |
$-28672/3$ |
$[0, -1, 1, -2858, 64868]$ |
\(y^2+y=x^3-x^2-2858x+64868\) |
6.2.0.a.1, 13.28.0.a.1, 65.56.0-13.a.1.1, 78.56.1.?, 91.84.2.?, $\ldots$ |
3675.c2 |
3675n1 |
3675.c |
3675n |
$2$ |
$13$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 3 \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2730$ |
$336$ |
$9$ |
$1.270957484$ |
$1$ |
|
$4$ |
$768$ |
$-0.040369$ |
$-28672/3$ |
$[0, 1, 1, -58, -206]$ |
\(y^2+y=x^3+x^2-58x-206\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 455.168.2.?, $\ldots$ |
7056.m2 |
7056bw1 |
7056.m |
7056bw |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$1092$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$0.397366$ |
$-28672/3$ |
$[0, 0, 0, -336, -2576]$ |
\(y^2=x^3-336x-2576\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 364.168.2.?, $\ldots$ |
7056.bp2 |
7056bm1 |
7056.bp |
7056bm |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$1092$ |
$336$ |
$9$ |
$0.630387323$ |
$1$ |
|
$4$ |
$13440$ |
$1.370321$ |
$-28672/3$ |
$[0, 0, 0, -16464, 883568]$ |
\(y^2=x^3-16464x+883568\) |
6.2.0.a.1, 13.28.0.a.1, 52.56.0-13.a.1.3, 78.56.1.?, 91.84.2.?, $\ldots$ |
9408.k2 |
9408cc1 |
9408.k |
9408cc |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$0.753191948$ |
$1$ |
|
$2$ |
$480$ |
$-0.498514$ |
$-28672/3$ |
$[0, -1, 0, -9, 15]$ |
\(y^2=x^3-x^2-9x+15\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
9408.bg2 |
9408c1 |
9408.bg |
9408c |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3 \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$2.906162682$ |
$1$ |
|
$2$ |
$3360$ |
$0.474441$ |
$-28672/3$ |
$[0, -1, 0, -457, 4243]$ |
\(y^2=x^3-x^2-457x+4243\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
9408.bz2 |
9408bi1 |
9408.bz |
9408bi |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$3.529988422$ |
$1$ |
|
$2$ |
$480$ |
$-0.498514$ |
$-28672/3$ |
$[0, 1, 0, -9, -15]$ |
\(y^2=x^3+x^2-9x-15\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
9408.cv2 |
9408cm1 |
9408.cv |
9408cm |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3 \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$3.830094258$ |
$1$ |
|
$2$ |
$3360$ |
$0.474441$ |
$-28672/3$ |
$[0, 1, 0, -457, -4243]$ |
\(y^2=x^3+x^2-457x-4243\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
11025.bo2 |
11025s1 |
11025.bo |
11025s |
$2$ |
$13$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{7} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2730$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$43008$ |
$1.481894$ |
$-28672/3$ |
$[0, 0, 1, -25725, -1725719]$ |
\(y^2+y=x^3-25725x-1725719\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 130.56.0.?, $\ldots$ |
11025.bp2 |
11025bb1 |
11025.bp |
11025bb |
$2$ |
$13$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{7} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2730$ |
$336$ |
$9$ |
$1.545729886$ |
$1$ |
|
$0$ |
$6144$ |
$0.508938$ |
$-28672/3$ |
$[0, 0, 1, -525, 5031]$ |
\(y^2+y=x^3-525x+5031\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
17787.b2 |
17787k1 |
17787.b |
17787k |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 3 \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$6006$ |
$336$ |
$9$ |
$0.703564283$ |
$1$ |
|
$4$ |
$8400$ |
$0.353860$ |
$-28672/3$ |
$[0, -1, 1, -282, 2078]$ |
\(y^2+y=x^3-x^2-282x+2078\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
17787.f2 |
17787m1 |
17787.f |
17787m |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 3 \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$6006$ |
$336$ |
$9$ |
$1.882041293$ |
$1$ |
|
$2$ |
$58800$ |
$1.326815$ |
$-28672/3$ |
$[0, 1, 1, -13834, -685184]$ |
\(y^2+y=x^3+x^2-13834x-685184\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 143.56.0.?, $\ldots$ |
24843.a2 |
24843g1 |
24843.a |
24843g |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$14040$ |
$0.437387$ |
$-28672/3$ |
$[0, -1, 1, -394, -3144]$ |
\(y^2+y=x^3-x^2-394x-3144\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.168.2.?, 546.336.9.? |
24843.d2 |
24843o1 |
24843.d |
24843o |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.56.0.2 |
13B.3.4 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$98280$ |
$1.410343$ |
$-28672/3$ |
$[0, 1, 1, -19322, 1116938]$ |
\(y^2+y=x^3+x^2-19322x+1116938\) |
6.2.0.a.1, 13.56.0-13.a.1.2, 78.112.1.?, 91.168.2.?, 546.336.9.? |
28224.bg2 |
28224bd1 |
28224.bg |
28224bd |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$26880$ |
$1.023746$ |
$-28672/3$ |
$[0, 0, 0, -4116, -110446]$ |
\(y^2=x^3-4116x-110446\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
28224.bt2 |
28224es1 |
28224.bt |
28224es |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$0.887870246$ |
$1$ |
|
$2$ |
$26880$ |
$1.023746$ |
$-28672/3$ |
$[0, 0, 0, -4116, 110446]$ |
\(y^2=x^3-4116x+110446\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
28224.ex2 |
28224bx1 |
28224.ex |
28224bx |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$1.361604413$ |
$1$ |
|
$2$ |
$3840$ |
$0.050792$ |
$-28672/3$ |
$[0, 0, 0, -84, 322]$ |
\(y^2=x^3-84x+322\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
28224.ff2 |
28224fq1 |
28224.ff |
28224fq |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$2184$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.050792$ |
$-28672/3$ |
$[0, 0, 0, -84, -322]$ |
\(y^2=x^3-84x-322\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
42483.y2 |
42483c1 |
42483.y |
42483c |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3 \cdot 7^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$9282$ |
$336$ |
$9$ |
$3.826229934$ |
$1$ |
|
$0$ |
$217728$ |
$1.544474$ |
$-28672/3$ |
$[0, -1, 1, -33042, 2523149]$ |
\(y^2+y=x^3-x^2-33042x+2523149\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 221.56.0.?, $\ldots$ |
42483.z2 |
42483x1 |
42483.z |
42483x |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3 \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$9282$ |
$336$ |
$9$ |
$13.35512665$ |
$1$ |
|
$0$ |
$31104$ |
$0.571519$ |
$-28672/3$ |
$[0, 1, 1, -674, -7549]$ |
\(y^2+y=x^3+x^2-674x-7549\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
53067.a2 |
53067d1 |
53067.a |
53067d |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 3 \cdot 7^{8} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$10374$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$301644$ |
$1.600086$ |
$-28672/3$ |
$[0, -1, 1, -41274, -3493414]$ |
\(y^2+y=x^3-x^2-41274x-3493414\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 247.56.0.?, $\ldots$ |
53067.f2 |
53067w1 |
53067.f |
53067w |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 3 \cdot 7^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$10374$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$43092$ |
$0.627132$ |
$-28672/3$ |
$[0, 1, 1, -842, 9944]$ |
\(y^2+y=x^3+x^2-842x+9944\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
53361.bz2 |
53361bt1 |
53361.bz |
53361bt |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{7} \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$6006$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$67200$ |
$0.903166$ |
$-28672/3$ |
$[0, 0, 1, -2541, -53573]$ |
\(y^2+y=x^3-2541x-53573\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
53361.cd2 |
53361u1 |
53361.cd |
53361u |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{7} \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$6006$ |
$336$ |
$9$ |
$3.198825374$ |
$1$ |
|
$0$ |
$470400$ |
$1.876122$ |
$-28672/3$ |
$[0, 0, 1, -124509, 18375453]$ |
\(y^2+y=x^3-124509x+18375453\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 286.56.0.?, $\ldots$ |
58800.dt2 |
58800fm1 |
58800.dt |
58800fm |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$5460$ |
$336$ |
$9$ |
$2.290808712$ |
$1$ |
|
$2$ |
$30720$ |
$0.652779$ |
$-28672/3$ |
$[0, -1, 0, -933, 12237]$ |
\(y^2=x^3-x^2-933x+12237\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
58800.ir2 |
58800hu1 |
58800.ir |
58800hu |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$5460$ |
$336$ |
$9$ |
$24.13962271$ |
$1$ |
|
$0$ |
$215040$ |
$1.625734$ |
$-28672/3$ |
$[0, 1, 0, -45733, -4105837]$ |
\(y^2=x^3+x^2-45733x-4105837\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 260.56.0.?, $\ldots$ |
74529.bo2 |
74529q1 |
74529.bo |
74529q |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$786240$ |
$1.959648$ |
$-28672/3$ |
$[0, 0, 1, -173901, -30331233]$ |
\(y^2+y=x^3-173901x-30331233\) |
6.2.0.a.1, 13.28.0.a.1, 26.56.0-13.a.1.2, 39.56.0-13.a.1.2, 78.112.1.?, $\ldots$ |
74529.bs2 |
74529bg1 |
74529.bs |
74529bg |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$546$ |
$336$ |
$9$ |
$4.136552838$ |
$1$ |
|
$0$ |
$112320$ |
$0.986693$ |
$-28672/3$ |
$[0, 0, 1, -3549, 88429]$ |
\(y^2+y=x^3-3549x+88429\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 182.168.2.?, $\ldots$ |
77763.bc2 |
77763q1 |
77763.bc |
77763q |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 23^{2} \) |
\( - 3 \cdot 7^{2} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$12558$ |
$336$ |
$9$ |
$3.720062514$ |
$1$ |
|
$0$ |
$76032$ |
$0.722660$ |
$-28672/3$ |
$[0, -1, 1, -1234, 18549]$ |
\(y^2+y=x^3-x^2-1234x+18549\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
77763.bf2 |
77763ba1 |
77763.bf |
77763ba |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 23^{2} \) |
\( - 3 \cdot 7^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$12558$ |
$336$ |
$9$ |
$21.76986490$ |
$1$ |
|
$0$ |
$532224$ |
$1.695614$ |
$-28672/3$ |
$[0, 1, 1, -60482, -6241441]$ |
\(y^2+y=x^3+x^2-60482x-6241441\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 299.56.0.?, $\ldots$ |
123627.b2 |
123627a1 |
123627.b |
123627a |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 29^{2} \) |
\( - 3 \cdot 7^{8} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$15834$ |
$336$ |
$9$ |
$2.448270265$ |
$1$ |
|
$2$ |
$1039584$ |
$1.811516$ |
$-28672/3$ |
$[0, -1, 1, -96154, 12502734]$ |
\(y^2+y=x^3-x^2-96154x+12502734\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 377.56.0.?, $\ldots$ |
123627.e2 |
123627t1 |
123627.e |
123627t |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 29^{2} \) |
\( - 3 \cdot 7^{2} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$15834$ |
$336$ |
$9$ |
$7.607903218$ |
$1$ |
|
$0$ |
$148512$ |
$0.838560$ |
$-28672/3$ |
$[0, 1, 1, -1962, -37012]$ |
\(y^2+y=x^3+x^2-1962x-37012\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
127449.b2 |
127449v1 |
127449.b |
127449v |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 7^{8} \cdot 17^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$9282$ |
$336$ |
$9$ |
$2.271720549$ |
$1$ |
|
$12$ |
$1741824$ |
$2.093781$ |
$-28672/3$ |
$[0, 0, 1, -297381, -67827650]$ |
\(y^2+y=x^3-297381x-67827650\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 442.56.0.?, $\ldots$ |
127449.e2 |
127449bq1 |
127449.e |
127449bq |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$9282$ |
$336$ |
$9$ |
$1.201745905$ |
$1$ |
|
$4$ |
$248832$ |
$1.120825$ |
$-28672/3$ |
$[0, 0, 1, -6069, 197748]$ |
\(y^2+y=x^3-6069x+197748\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
141267.bk2 |
141267bp1 |
141267.bk |
141267bp |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 31^{2} \) |
\( - 3 \cdot 7^{8} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$16926$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1188180$ |
$1.844862$ |
$-28672/3$ |
$[0, -1, 1, -109874, -15196231]$ |
\(y^2+y=x^3-x^2-109874x-15196231\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 403.56.0.?, $\ldots$ |
141267.bq2 |
141267bl1 |
141267.bq |
141267bl |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 31^{2} \) |
\( - 3 \cdot 7^{2} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$16926$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$169740$ |
$0.871906$ |
$-28672/3$ |
$[0, 1, 1, -2242, 43663]$ |
\(y^2+y=x^3+x^2-2242x+43663\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
159201.bs2 |
159201br1 |
159201.bs |
159201br |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{7} \cdot 7^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$10374$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$344736$ |
$1.176437$ |
$-28672/3$ |
$[0, 0, 1, -7581, -276075]$ |
\(y^2+y=x^3-7581x-276075\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
159201.by2 |
159201by1 |
159201.by |
159201by |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{7} \cdot 7^{8} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$10374$ |
$336$ |
$9$ |
$15.70521171$ |
$1$ |
|
$0$ |
$2413152$ |
$2.149395$ |
$-28672/3$ |
$[0, 0, 1, -371469, 94693639]$ |
\(y^2+y=x^3-371469x+94693639\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 494.56.0.?, $\ldots$ |
176400.fk2 |
176400hl1 |
176400.fk |
176400hl |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$5460$ |
$336$ |
$9$ |
$5.726426464$ |
$1$ |
|
$2$ |
$1720320$ |
$2.175041$ |
$-28672/3$ |
$[0, 0, 0, -411600, 110446000]$ |
\(y^2=x^3-411600x+110446000\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 260.56.0.?, $\ldots$ |
176400.fy2 |
176400eq1 |
176400.fy |
176400eq |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$5460$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$245760$ |
$1.202085$ |
$-28672/3$ |
$[0, 0, 0, -8400, -322000]$ |
\(y^2=x^3-8400x-322000\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
201243.b2 |
201243d1 |
201243.b |
201243d |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 37^{2} \) |
\( - 3 \cdot 7^{2} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$20202$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$309960$ |
$0.960371$ |
$-28672/3$ |
$[0, -1, 1, -3194, -74446]$ |
\(y^2+y=x^3-x^2-3194x-74446\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
201243.c2 |
201243a1 |
201243.c |
201243a |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 37^{2} \) |
\( - 3 \cdot 7^{8} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$20202$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$2169720$ |
$1.933327$ |
$-28672/3$ |
$[0, 1, 1, -156522, 25847924]$ |
\(y^2+y=x^3+x^2-156522x+25847924\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 481.56.0.?, $\ldots$ |
233289.b2 |
233289b1 |
233289.b |
233289b |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 3^{7} \cdot 7^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$12558$ |
$336$ |
$9$ |
$0.912684416$ |
$1$ |
|
$4$ |
$4257792$ |
$2.244923$ |
$-28672/3$ |
$[0, 0, 1, -544341, 167974560]$ |
\(y^2+y=x^3-544341x+167974560\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
233289.f2 |
233289f1 |
233289.f |
233289f |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 3^{7} \cdot 7^{2} \cdot 23^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.1 |
13B.4.1 |
$12558$ |
$336$ |
$9$ |
$4.510997302$ |
$1$ |
|
$6$ |
$608256$ |
$1.271965$ |
$-28672/3$ |
$[0, 0, 1, -11109, -489722]$ |
\(y^2+y=x^3-11109x-489722\) |
6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |