| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 5240.e1 |
5240b1 |
5240.e |
5240b |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 131 \) |
\( - 2^{4} \cdot 5 \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$0.820137654$ |
$1$ |
|
$2$ |
$320$ |
$-0.549610$ |
$-256/655$ |
$0.74283$ |
$1.95143$ |
$[0, -1, 0, 0, 5]$ |
\(y^2=x^3-x^2+5\) |
1310.2.0.? |
$[(2, 3)]$ |
$1$ |
| 10480.b1 |
10480c1 |
10480.b |
10480c |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 131 \) |
\( - 2^{4} \cdot 5 \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$640$ |
$-0.549610$ |
$-256/655$ |
$0.74283$ |
$1.80531$ |
$[0, 1, 0, 0, -5]$ |
\(y^2=x^3+x^2-5\) |
1310.2.0.? |
$[ ]$ |
$1$ |
| 26200.b1 |
26200h1 |
26200.b |
26200h |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 131 \) |
\( - 2^{4} \cdot 5^{7} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$0.253610446$ |
$1$ |
|
$6$ |
$7680$ |
$0.255109$ |
$-256/655$ |
$0.74283$ |
$2.59191$ |
$[0, 1, 0, -8, 613]$ |
\(y^2=x^3+x^2-8x+613\) |
1310.2.0.? |
$[(-2, 25)]$ |
$1$ |
| 41920.g1 |
41920f1 |
41920.g |
41920f |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 131 \) |
\( - 2^{10} \cdot 5 \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1.767748043$ |
$1$ |
|
$2$ |
$5120$ |
$-0.203037$ |
$-256/655$ |
$0.74283$ |
$1.96092$ |
$[0, 1, 0, -1, 39]$ |
\(y^2=x^3+x^2-x+39\) |
1310.2.0.? |
$[(2, 7)]$ |
$1$ |
| 41920.bi1 |
41920bd1 |
41920.bi |
41920bd |
$1$ |
$1$ |
\( 2^{6} \cdot 5 \cdot 131 \) |
\( - 2^{10} \cdot 5 \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$5.955295759$ |
$1$ |
|
$2$ |
$5120$ |
$-0.203037$ |
$-256/655$ |
$0.74283$ |
$1.96092$ |
$[0, -1, 0, -1, -39]$ |
\(y^2=x^3-x^2-x-39\) |
1310.2.0.? |
$[(384, 7515)]$ |
$1$ |
| 47160.c1 |
47160g1 |
47160.c |
47160g |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 131 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5 \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1.356008088$ |
$1$ |
|
$2$ |
$7680$ |
$-0.000304$ |
$-256/655$ |
$0.74283$ |
$2.16552$ |
$[0, 0, 0, -3, -133]$ |
\(y^2=x^3-3x-133\) |
1310.2.0.? |
$[(13, 45)]$ |
$1$ |
| 52400.bk1 |
52400b1 |
52400.bk |
52400b |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 131 \) |
\( - 2^{4} \cdot 5^{7} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$2.871464676$ |
$1$ |
|
$2$ |
$15360$ |
$0.255109$ |
$-256/655$ |
$0.74283$ |
$2.42658$ |
$[0, -1, 0, -8, -613]$ |
\(y^2=x^3-x^2-8x-613\) |
1310.2.0.? |
$[(127, 1425)]$ |
$1$ |
| 94320.l1 |
94320d1 |
94320.l |
94320d |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 131 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5 \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1.065874100$ |
$1$ |
|
$2$ |
$15360$ |
$-0.000304$ |
$-256/655$ |
$0.74283$ |
$2.03448$ |
$[0, 0, 0, -3, 133]$ |
\(y^2=x^3-3x+133\) |
1310.2.0.? |
$[(-4, 9)]$ |
$1$ |
| 209600.l1 |
209600e1 |
209600.l |
209600e |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 131 \) |
\( - 2^{10} \cdot 5^{7} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1.814125247$ |
$1$ |
|
$2$ |
$122880$ |
$0.601683$ |
$-256/655$ |
$0.74283$ |
$2.49145$ |
$[0, 1, 0, -33, -4937]$ |
\(y^2=x^3+x^2-33x-4937\) |
1310.2.0.? |
$[(18, 25)]$ |
$1$ |
| 209600.de1 |
209600do1 |
209600.de |
209600do |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 131 \) |
\( - 2^{10} \cdot 5^{7} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$5.682422883$ |
$1$ |
|
$0$ |
$122880$ |
$0.601683$ |
$-256/655$ |
$0.74283$ |
$2.49145$ |
$[0, -1, 0, -33, 4937]$ |
\(y^2=x^3-x^2-33x+4937\) |
1310.2.0.? |
$[(-832/7, 6075/7)]$ |
$1$ |
| 235800.x1 |
235800x1 |
235800.x |
235800x |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 131 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{7} \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184320$ |
$0.804415$ |
$-256/655$ |
$0.74283$ |
$2.66439$ |
$[0, 0, 0, -75, -16625]$ |
\(y^2=x^3-75x-16625\) |
1310.2.0.? |
$[ ]$ |
$1$ |
| 256760.b1 |
256760b1 |
256760.b |
256760b |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \cdot 131 \) |
\( - 2^{4} \cdot 5 \cdot 7^{6} \cdot 131 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$2.877901670$ |
$1$ |
|
$10$ |
$122880$ |
$0.423345$ |
$-256/655$ |
$0.74283$ |
$2.27905$ |
$[0, 1, 0, -16, -1695]$ |
\(y^2=x^3+x^2-16x-1695\) |
1310.2.0.? |
$[(16, 49), (24, 111)]$ |
$1$ |
| 377280.cw1 |
377280cw1 |
377280.cw |
377280cw |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 131 \) |
\( - 2^{10} \cdot 3^{6} \cdot 5 \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$122880$ |
$0.346270$ |
$-256/655$ |
$0.74283$ |
$2.13872$ |
$[0, 0, 0, -12, -1064]$ |
\(y^2=x^3-12x-1064\) |
1310.2.0.? |
$[ ]$ |
$1$ |
| 377280.di1 |
377280di1 |
377280.di |
377280di |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 131 \) |
\( - 2^{10} \cdot 3^{6} \cdot 5 \cdot 131 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$122880$ |
$0.346270$ |
$-256/655$ |
$0.74283$ |
$2.13872$ |
$[0, 0, 0, -12, 1064]$ |
\(y^2=x^3-12x+1064\) |
1310.2.0.? |
$[ ]$ |
$1$ |
| 471600.cu1 |
471600cu1 |
471600.cu |
471600cu |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 131 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{7} \cdot 131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1310$ |
$2$ |
$0$ |
$2.464075413$ |
$1$ |
|
$2$ |
$368640$ |
$0.804415$ |
$-256/655$ |
$0.74283$ |
$2.52302$ |
$[0, 0, 0, -75, 16625]$ |
\(y^2=x^3-75x+16625\) |
1310.2.0.? |
$[(160, 2025)]$ |
$1$ |