Learn more

Refine search


Results (44 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
1248.b4 1248.b \( 2^{5} \cdot 3 \cdot 13 \) $1$ $\Z/2\Z$ $6.992997795$ $[0, -1, 0, -104, -2856]$ \(y^2=x^3-x^2-104x-2856\)
1248.f4 1248.f \( 2^{5} \cdot 3 \cdot 13 \) $1$ $\Z/4\Z$ $1.560471980$ $[0, 1, 0, -104, 2856]$ \(y^2=x^3+x^2-104x+2856\)
2496.l3 2496.l \( 2^{6} \cdot 3 \cdot 13 \) $1$ $\Z/2\Z$ $3.748899905$ $[0, -1, 0, -417, 23265]$ \(y^2=x^3-x^2-417x+23265\)
2496.ba3 2496.ba \( 2^{6} \cdot 3 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -417, -23265]$ \(y^2=x^3+x^2-417x-23265\)
3744.l4 3744.l \( 2^{5} \cdot 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.756378359$ $[0, 0, 0, -939, 78050]$ \(y^2=x^3-939x+78050\)
3744.o4 3744.o \( 2^{5} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -939, -78050]$ \(y^2=x^3-939x-78050\)
7488.m3 7488.m \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3756, -624400]$ \(y^2=x^3-3756x-624400\)
7488.p3 7488.p \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3756, 624400]$ \(y^2=x^3-3756x+624400\)
16224.i4 16224.i \( 2^{5} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $27.06460260$ $[0, -1, 0, -17632, -6345080]$ \(y^2=x^3-x^2-17632x-6345080\)
16224.v4 16224.v \( 2^{5} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.774080791$ $[0, 1, 0, -17632, 6345080]$ \(y^2=x^3+x^2-17632x+6345080\)
31200.j4 31200.j \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2608, 362212]$ \(y^2=x^3-x^2-2608x+362212\)
31200.cb4 31200.cb \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2608, -362212]$ \(y^2=x^3+x^2-2608x-362212\)
32448.m3 32448.m \( 2^{6} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.625645718$ $[0, -1, 0, -70529, 50831169]$ \(y^2=x^3-x^2-70529x+50831169\)
32448.cg3 32448.cg \( 2^{6} \cdot 3 \cdot 13^{2} \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -70529, -50831169]$ \(y^2=x^3+x^2-70529x-50831169\)
48672.l4 48672.l \( 2^{5} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -158691, -171475850]$ \(y^2=x^3-158691x-171475850\)
48672.r4 48672.r \( 2^{5} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $15.58068651$ $[0, 0, 0, -158691, 171475850]$ \(y^2=x^3-158691x+171475850\)
61152.x4 61152.x \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5112, -989820]$ \(y^2=x^3-x^2-5112x-989820\)
61152.ca4 61152.ca \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -5112, 989820]$ \(y^2=x^3+x^2-5112x+989820\)
62400.cn3 62400.cn \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -10433, -2887263]$ \(y^2=x^3-x^2-10433x-2887263\)
62400.fy3 62400.fy \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.493008658$ $[0, 1, 0, -10433, 2887263]$ \(y^2=x^3+x^2-10433x+2887263\)
93600.ch4 93600.ch \( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.257604464$ $[0, 0, 0, -23475, 9756250]$ \(y^2=x^3-23475x+9756250\)
93600.cu4 93600.cu \( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -23475, -9756250]$ \(y^2=x^3-23475x-9756250\)
97344.ew3 97344.ew \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -634764, 1371806800]$ \(y^2=x^3-634764x+1371806800\)
97344.fd3 97344.fd \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -634764, -1371806800]$ \(y^2=x^3-634764x-1371806800\)
122304.x3 122304.x \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.137907615$ $[0, -1, 0, -20449, 7939009]$ \(y^2=x^3-x^2-20449x+7939009\)
122304.fs3 122304.fs \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -20449, -7939009]$ \(y^2=x^3+x^2-20449x-7939009\)
151008.g4 151008.g \( 2^{5} \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -12624, 3851784]$ \(y^2=x^3-x^2-12624x+3851784\)
151008.be4 151008.be \( 2^{5} \cdot 3 \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $6.152858100$ $[0, 1, 0, -12624, -3851784]$ \(y^2=x^3+x^2-12624x-3851784\)
183456.r4 183456.r \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.628035136$ $[0, 0, 0, -46011, -26771150]$ \(y^2=x^3-46011x-26771150\)
183456.bc4 183456.bc \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -46011, 26771150]$ \(y^2=x^3-46011x+26771150\)
187200.hg3 187200.hg \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.787452429$ $[0, 0, 0, -93900, -78050000]$ \(y^2=x^3-93900x-78050000\)
187200.jd3 187200.jd \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.315394638$ $[0, 0, 0, -93900, 78050000]$ \(y^2=x^3-93900x+78050000\)
302016.dg3 302016.dg \( 2^{6} \cdot 3 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $17.05374729$ $[0, -1, 0, -50497, -30763775]$ \(y^2=x^3-x^2-50497x-30763775\)
302016.hh3 302016.hh \( 2^{6} \cdot 3 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -50497, 30763775]$ \(y^2=x^3+x^2-50497x+30763775\)
360672.w4 360672.w \( 2^{5} \cdot 3 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -30152, 14212260]$ \(y^2=x^3-x^2-30152x+14212260\)
360672.bu4 360672.bu \( 2^{5} \cdot 3 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $11.64838835$ $[0, 1, 0, -30152, -14212260]$ \(y^2=x^3+x^2-30152x-14212260\)
366912.mc3 366912.mc \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -184044, 214169200]$ \(y^2=x^3-184044x+214169200\)
366912.np3 366912.np \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -184044, -214169200]$ \(y^2=x^3-184044x-214169200\)
405600.cc4 405600.cc \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.385813589$ $[0, -1, 0, -440808, 794016612]$ \(y^2=x^3-x^2-440808x+794016612\)
405600.fe4 405600.fe \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.664420899$ $[0, 1, 0, -440808, -794016612]$ \(y^2=x^3+x^2-440808x-794016612\)
450528.f4 450528.f \( 2^{5} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $8.489607694$ $[0, -1, 0, -37664, -19815036]$ \(y^2=x^3-x^2-37664x-19815036\)
450528.bc4 450528.bc \( 2^{5} \cdot 3 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.394043851$ $[0, 1, 0, -37664, 19815036]$ \(y^2=x^3+x^2-37664x+19815036\)
453024.dc4 453024.dc \( 2^{5} \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.475055027$ $[0, 0, 0, -113619, 103884550]$ \(y^2=x^3-113619x+103884550\)
453024.dd4 453024.dd \( 2^{5} \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -113619, -103884550]$ \(y^2=x^3-113619x-103884550\)
  Download to