Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
4650.b2 |
4650m1 |
4650.b |
4650m |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$1240$ |
$48$ |
$1$ |
$0.203292700$ |
$1$ |
|
$6$ |
$7200$ |
$1.021036$ |
$-2372030262025/2061298872$ |
$[1, 1, 0, -2375, -71475]$ |
\(y^2+xy=x^3+x^2-2375x-71475\) |
5.24.0-5.a.2.1, 248.2.0.?, 1240.48.1.? |
4650.bu1 |
4650bp2 |
4650.bu |
4650bp |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{10} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.3 |
5B.1.2 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$36000$ |
$1.825756$ |
$-2372030262025/2061298872$ |
$[1, 0, 0, -59388, -8815608]$ |
\(y^2+xy=x^3-59388x-8815608\) |
5.24.0-5.a.2.2, 248.2.0.?, 1240.48.1.? |
13950.bk1 |
13950ba2 |
13950.bk |
13950ba |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{8} \cdot 5^{10} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$1.016817991$ |
$1$ |
|
$4$ |
$288000$ |
$2.375061$ |
$-2372030262025/2061298872$ |
$[1, -1, 0, -534492, 238021416]$ |
\(y^2+xy=x^3-x^2-534492x+238021416\) |
5.12.0.a.2, 15.24.0-5.a.2.1, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
13950.bu2 |
13950dc1 |
13950.bu |
13950dc |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{8} \cdot 5^{4} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$0.251043153$ |
$1$ |
|
$6$ |
$57600$ |
$1.570343$ |
$-2372030262025/2061298872$ |
$[1, -1, 1, -21380, 1908447]$ |
\(y^2+xy+y=x^3-x^2-21380x+1908447\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
37200.i1 |
37200bo2 |
37200.i |
37200bo |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{2} \cdot 5^{10} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$864000$ |
$2.518902$ |
$-2372030262025/2061298872$ |
$[0, -1, 0, -950208, 564198912]$ |
\(y^2=x^3-x^2-950208x+564198912\) |
5.12.0.a.2, 20.24.0-5.a.2.2, 248.2.0.?, 1240.48.1.? |
37200.du2 |
37200dr1 |
37200.du |
37200dr |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{2} \cdot 5^{4} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$172800$ |
$1.714184$ |
$-2372030262025/2061298872$ |
$[0, 1, 0, -38008, 4498388]$ |
\(y^2=x^3+x^2-38008x+4498388\) |
5.12.0.a.2, 20.24.0-5.a.2.1, 248.2.0.?, 1240.48.1.? |
111600.bb1 |
111600ee2 |
111600.bb |
111600ee |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{8} \cdot 5^{10} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$13.79047005$ |
$1$ |
|
$0$ |
$6912000$ |
$3.068211$ |
$-2372030262025/2061298872$ |
$[0, 0, 0, -8551875, -15224818750]$ |
\(y^2=x^3-8551875x-15224818750\) |
5.12.0.a.2, 60.24.0-5.a.2.2, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
111600.fw2 |
111600gb1 |
111600.fw |
111600gb |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{8} \cdot 5^{4} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.263489$ |
$-2372030262025/2061298872$ |
$[0, 0, 0, -342075, -121798550]$ |
\(y^2=x^3-342075x-121798550\) |
5.12.0.a.2, 60.24.0-5.a.2.1, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
144150.bp2 |
144150cr1 |
144150.bp |
144150cr |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 31^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$2.738029$ |
$-2372030262025/2061298872$ |
$[1, 0, 1, -2282876, 2099636498]$ |
\(y^2+xy+y=x^3-2282876x+2099636498\) |
5.12.0.a.2, 40.24.0-5.a.2.8, 155.24.0.?, 248.2.0.?, 1240.48.1.? |
144150.dt1 |
144150ck2 |
144150.dt |
144150ck |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{10} \cdot 31^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$15.51657912$ |
$1$ |
|
$0$ |
$34560000$ |
$3.542747$ |
$-2372030262025/2061298872$ |
$[1, 1, 1, -57071888, 262454562281]$ |
\(y^2+xy+y=x^3+x^2-57071888x+262454562281\) |
5.12.0.a.2, 40.24.0-5.a.2.7, 155.24.0.?, 248.2.0.?, 1240.48.1.? |
148800.ev2 |
148800dw1 |
148800.ev |
148800dw |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{4} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$5.729759451$ |
$1$ |
|
$2$ |
$1382400$ |
$2.060757$ |
$-2372030262025/2061298872$ |
$[0, -1, 0, -152033, 36139137]$ |
\(y^2=x^3-x^2-152033x+36139137\) |
5.12.0.a.2, 40.24.0-5.a.2.2, 248.2.0.?, 620.24.0.?, 1240.48.1.? |
148800.ez1 |
148800le2 |
148800.ez |
148800le |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{10} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$2.865475$ |
$-2372030262025/2061298872$ |
$[0, -1, 0, -3800833, -4509790463]$ |
\(y^2=x^3-x^2-3800833x-4509790463\) |
5.12.0.a.2, 40.24.0-5.a.2.3, 248.2.0.?, 310.24.0.?, 1240.48.1.? |
148800.gh1 |
148800bg2 |
148800.gh |
148800bg |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{10} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$6.029631094$ |
$1$ |
|
$2$ |
$6912000$ |
$2.865475$ |
$-2372030262025/2061298872$ |
$[0, 1, 0, -3800833, 4509790463]$ |
\(y^2=x^3+x^2-3800833x+4509790463\) |
5.12.0.a.2, 40.24.0-5.a.2.1, 248.2.0.?, 620.24.0.?, 1240.48.1.? |
148800.go2 |
148800fy1 |
148800.go |
148800fy |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{4} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.060757$ |
$-2372030262025/2061298872$ |
$[0, 1, 0, -152033, -36139137]$ |
\(y^2=x^3+x^2-152033x-36139137\) |
5.12.0.a.2, 40.24.0-5.a.2.4, 248.2.0.?, 310.24.0.?, 1240.48.1.? |
227850.dd2 |
227850ex1 |
227850.dd |
227850ex |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 7^{6} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$8680$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2376000$ |
$1.993992$ |
$-2372030262025/2061298872$ |
$[1, 0, 1, -116401, 24166748]$ |
\(y^2+xy+y=x^3-116401x+24166748\) |
5.12.0.a.2, 35.24.0-5.a.2.1, 248.2.0.?, 1240.24.1.?, 8680.48.1.? |
227850.fi1 |
227850do2 |
227850.fi |
227850do |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{10} \cdot 7^{6} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$8680$ |
$48$ |
$1$ |
$13.21996087$ |
$1$ |
|
$0$ |
$11880000$ |
$2.798710$ |
$-2372030262025/2061298872$ |
$[1, 1, 1, -2910013, 3020843531]$ |
\(y^2+xy+y=x^3+x^2-2910013x+3020843531\) |
5.12.0.a.2, 35.24.0-5.a.2.2, 248.2.0.?, 1240.24.1.?, 8680.48.1.? |
432450.dd1 |
432450dd2 |
432450.dd |
432450dd |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{3} \cdot 3^{8} \cdot 5^{10} \cdot 31^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$57.73041134$ |
$1$ |
|
$0$ |
$276480000$ |
$4.092056$ |
$-2372030262025/2061298872$ |
$[1, -1, 0, -513646992, -7086786828584]$ |
\(y^2+xy=x^3-x^2-513646992x-7086786828584\) |
5.12.0.a.2, 120.24.0.?, 248.2.0.?, 465.24.0.?, 1240.24.1.?, $\ldots$ |
432450.ep2 |
432450ep1 |
432450.ep |
432450ep |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{3} \cdot 3^{8} \cdot 5^{4} \cdot 31^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$11.52281849$ |
$1$ |
|
$0$ |
$55296000$ |
$3.287338$ |
$-2372030262025/2061298872$ |
$[1, -1, 1, -20545880, -56690185453]$ |
\(y^2+xy+y=x^3-x^2-20545880x-56690185453\) |
5.12.0.a.2, 120.24.0.?, 248.2.0.?, 465.24.0.?, 1240.24.1.?, $\ldots$ |
446400.df2 |
446400df1 |
446400.df |
446400df |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{8} \cdot 5^{4} \cdot 31^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$0.372416827$ |
$1$ |
|
$20$ |
$11059200$ |
$2.610065$ |
$-2372030262025/2061298872$ |
$[0, 0, 0, -1368300, 974388400]$ |
\(y^2=x^3-1368300x+974388400\) |
5.12.0.a.2, 120.24.0.?, 248.2.0.?, 930.24.0.?, 1240.24.1.?, $\ldots$ |
446400.dq1 |
446400dq2 |
446400.dq |
446400dq |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{8} \cdot 5^{10} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$34.55135724$ |
$1$ |
|
$0$ |
$55296000$ |
$3.414783$ |
$-2372030262025/2061298872$ |
$[0, 0, 0, -34207500, -121798550000]$ |
\(y^2=x^3-34207500x-121798550000\) |
5.12.0.a.2, 120.24.0.?, 248.2.0.?, 1240.24.1.?, 1860.24.0.?, $\ldots$ |
446400.qc1 |
446400qc2 |
446400.qc |
446400qc |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{8} \cdot 5^{10} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$3.460539828$ |
$1$ |
|
$2$ |
$55296000$ |
$3.414783$ |
$-2372030262025/2061298872$ |
$[0, 0, 0, -34207500, 121798550000]$ |
\(y^2=x^3-34207500x+121798550000\) |
5.12.0.a.2, 120.24.0.?, 248.2.0.?, 930.24.0.?, 1240.24.1.?, $\ldots$ |
446400.qr2 |
446400qr1 |
446400.qr |
446400qr |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{8} \cdot 5^{4} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3720$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$11059200$ |
$2.610065$ |
$-2372030262025/2061298872$ |
$[0, 0, 0, -1368300, -974388400]$ |
\(y^2=x^3-1368300x-974388400\) |
5.12.0.a.2, 120.24.0.?, 248.2.0.?, 1240.24.1.?, 1860.24.0.?, $\ldots$ |