Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
51.a1 |
51a2 |
51.a |
51a |
$2$ |
$3$ |
\( 3 \cdot 17 \) |
\( - 3 \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.259223$ |
$-23100424192/14739$ |
$[0, 1, 1, -59, -196]$ |
\(y^2+y=x^3+x^2-59x-196\) |
153.b1 |
153b2 |
153.b |
153b |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \) |
\( - 3^{7} \cdot 17^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$0.338669215$ |
$1$ |
|
$10$ |
$48$ |
$0.290082$ |
$-23100424192/14739$ |
$[0, 0, 1, -534, 4752]$ |
\(y^2+y=x^3-534x+4752\) |
816.g1 |
816f2 |
816.g |
816f |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.433924$ |
$-23100424192/14739$ |
$[0, -1, 0, -949, 11581]$ |
\(y^2=x^3-x^2-949x+11581\) |
867.c1 |
867a2 |
867.c |
867a |
$2$ |
$3$ |
\( 3 \cdot 17^{2} \) |
\( - 3 \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.035913469$ |
$1$ |
|
$0$ |
$1728$ |
$1.157383$ |
$-23100424192/14739$ |
$[0, -1, 1, -17147, -859018]$ |
\(y^2+y=x^3-x^2-17147x-859018\) |
1275.d1 |
1275a2 |
1275.d |
1275a |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17 \) |
\( - 3 \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$648$ |
$0.545495$ |
$-23100424192/14739$ |
$[0, -1, 1, -1483, -21507]$ |
\(y^2+y=x^3-x^2-1483x-21507\) |
2448.c1 |
2448s2 |
2448.c |
2448s |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.983230$ |
$-23100424192/14739$ |
$[0, 0, 0, -8544, -304144]$ |
\(y^2=x^3-8544x-304144\) |
2499.d1 |
2499d2 |
2499.d |
2499d |
$2$ |
$3$ |
\( 3 \cdot 7^{2} \cdot 17 \) |
\( - 3 \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.200558151$ |
$1$ |
|
$4$ |
$1728$ |
$0.713732$ |
$-23100424192/14739$ |
$[0, -1, 1, -2907, 61340]$ |
\(y^2+y=x^3-x^2-2907x+61340\) |
2601.f1 |
2601g2 |
2601.f |
2601g |
$2$ |
$3$ |
\( 3^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$13824$ |
$1.706690$ |
$-23100424192/14739$ |
$[0, 0, 1, -154326, 23347804]$ |
\(y^2+y=x^3-154326x+23347804\) |
3264.a1 |
3264e2 |
3264.a |
3264e |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3.542758762$ |
$1$ |
|
$2$ |
$864$ |
$0.087350$ |
$-23100424192/14739$ |
$[0, -1, 0, -237, -1329]$ |
\(y^2=x^3-x^2-237x-1329\) |
3264.r1 |
3264z2 |
3264.r |
3264z |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.351542505$ |
$1$ |
|
$2$ |
$864$ |
$0.087350$ |
$-23100424192/14739$ |
$[0, 1, 0, -237, 1329]$ |
\(y^2=x^3+x^2-237x+1329\) |
3825.i1 |
3825e2 |
3825.i |
3825e |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 3^{7} \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$1.094801$ |
$-23100424192/14739$ |
$[0, 0, 1, -13350, 594031]$ |
\(y^2+y=x^3-13350x+594031\) |
6171.e1 |
6171g2 |
6171.e |
6171g |
$2$ |
$3$ |
\( 3 \cdot 11^{2} \cdot 17 \) |
\( - 3 \cdot 11^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$8100$ |
$0.939724$ |
$-23100424192/14739$ |
$[0, 1, 1, -7179, 231875]$ |
\(y^2+y=x^3+x^2-7179x+231875\) |
7497.j1 |
7497f2 |
7497.j |
7497f |
$2$ |
$3$ |
\( 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{7} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5.824605129$ |
$1$ |
|
$0$ |
$13824$ |
$1.263037$ |
$-23100424192/14739$ |
$[0, 0, 1, -26166, -1630022]$ |
\(y^2+y=x^3-26166x-1630022\) |
8619.g1 |
8619i2 |
8619.g |
8619i |
$2$ |
$3$ |
\( 3 \cdot 13^{2} \cdot 17 \) |
\( - 3 \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$14040$ |
$1.023251$ |
$-23100424192/14739$ |
$[0, 1, 1, -10027, -390035]$ |
\(y^2+y=x^3+x^2-10027x-390035\) |
9792.by1 |
9792y2 |
9792.by |
9792y |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 17 \) |
\( - 2^{6} \cdot 3^{7} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.485967363$ |
$1$ |
|
$2$ |
$6912$ |
$0.636656$ |
$-23100424192/14739$ |
$[0, 0, 0, -2136, 38018]$ |
\(y^2=x^3-2136x+38018\) |
9792.cd1 |
9792cc2 |
9792.cd |
9792cc |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 17 \) |
\( - 2^{6} \cdot 3^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$0.636656$ |
$-23100424192/14739$ |
$[0, 0, 0, -2136, -38018]$ |
\(y^2=x^3-2136x-38018\) |
13872.w1 |
13872bn2 |
13872.w |
13872bn |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3 \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.876064906$ |
$1$ |
|
$0$ |
$124416$ |
$1.850531$ |
$-23100424192/14739$ |
$[0, 1, 0, -274357, 55251491]$ |
\(y^2=x^3+x^2-274357x+55251491\) |
18411.g1 |
18411c2 |
18411.g |
18411c |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 19^{2} \) |
\( - 3 \cdot 17^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$43092$ |
$1.212996$ |
$-23100424192/14739$ |
$[0, -1, 1, -21419, 1214387]$ |
\(y^2+y=x^3-x^2-21419x+1214387\) |
18513.j1 |
18513n2 |
18513.j |
18513n |
$2$ |
$3$ |
\( 3^{2} \cdot 11^{2} \cdot 17 \) |
\( - 3^{7} \cdot 11^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6.111162221$ |
$1$ |
|
$0$ |
$64800$ |
$1.489031$ |
$-23100424192/14739$ |
$[0, 0, 1, -64614, -6325245]$ |
\(y^2+y=x^3-64614x-6325245\) |
20400.ce1 |
20400dm2 |
20400.ce |
20400dm |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$46656$ |
$1.238642$ |
$-23100424192/14739$ |
$[0, 1, 0, -23733, 1400163]$ |
\(y^2=x^3+x^2-23733x+1400163\) |
21675.m1 |
21675p2 |
21675.m |
21675p |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{6} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$186624$ |
$1.962103$ |
$-23100424192/14739$ |
$[0, 1, 1, -428683, -108234581]$ |
\(y^2+y=x^3+x^2-428683x-108234581\) |
25857.k1 |
25857q2 |
25857.k |
25857q |
$2$ |
$3$ |
\( 3^{2} \cdot 13^{2} \cdot 17 \) |
\( - 3^{7} \cdot 13^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.813325665$ |
$1$ |
|
$4$ |
$112320$ |
$1.572557$ |
$-23100424192/14739$ |
$[0, 0, 1, -90246, 10440693]$ |
\(y^2+y=x^3-90246x+10440693\) |
26979.i1 |
26979p2 |
26979.i |
26979p |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 23^{2} \) |
\( - 3 \cdot 17^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$65340$ |
$1.308523$ |
$-23100424192/14739$ |
$[0, 1, 1, -31387, 2131042]$ |
\(y^2+y=x^3+x^2-31387x+2131042\) |
39984.cc1 |
39984dv2 |
39984.cc |
39984dv |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6.006658344$ |
$1$ |
|
$2$ |
$124416$ |
$1.406879$ |
$-23100424192/14739$ |
$[0, 1, 0, -46517, -3879261]$ |
\(y^2=x^3+x^2-46517x-3879261\) |
41616.cn1 |
41616cn2 |
41616.cn |
41616cn |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$13.60795616$ |
$1$ |
|
$0$ |
$995328$ |
$2.399837$ |
$-23100424192/14739$ |
$[0, 0, 0, -2469216, -1494259472]$ |
\(y^2=x^3-2469216x-1494259472\) |
42483.s1 |
42483q2 |
42483.s |
42483q |
$2$ |
$3$ |
\( 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3 \cdot 7^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5.475723606$ |
$1$ |
|
$0$ |
$497664$ |
$2.130337$ |
$-23100424192/14739$ |
$[0, 1, 1, -840219, 296323514]$ |
\(y^2+y=x^3+x^2-840219x+296323514\) |
42891.f1 |
42891e2 |
42891.f |
42891e |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 29^{2} \) |
\( - 3 \cdot 17^{3} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$145152$ |
$1.424425$ |
$-23100424192/14739$ |
$[0, -1, 1, -49899, -4276057]$ |
\(y^2+y=x^3-x^2-49899x-4276057\) |
49011.b1 |
49011a2 |
49011.b |
49011a |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 31^{2} \) |
\( - 3 \cdot 17^{3} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.987356786$ |
$1$ |
|
$4$ |
$183600$ |
$1.457769$ |
$-23100424192/14739$ |
$[0, -1, 1, -57019, 5262498]$ |
\(y^2+y=x^3-x^2-57019x+5262498\) |
55233.h1 |
55233p2 |
55233.h |
55233p |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \cdot 19^{2} \) |
\( - 3^{7} \cdot 17^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$344736$ |
$1.762302$ |
$-23100424192/14739$ |
$[0, 0, 1, -192774, -32595683]$ |
\(y^2+y=x^3-192774x-32595683\) |
55488.ca1 |
55488cv2 |
55488.ca |
55488cv |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3 \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$248832$ |
$1.503956$ |
$-23100424192/14739$ |
$[0, -1, 0, -68589, 6940731]$ |
\(y^2=x^3-x^2-68589x+6940731\) |
55488.eh1 |
55488bp2 |
55488.eh |
55488bp |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3 \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$248832$ |
$1.503956$ |
$-23100424192/14739$ |
$[0, 1, 0, -68589, -6940731]$ |
\(y^2=x^3+x^2-68589x-6940731\) |
61200.h1 |
61200fc2 |
61200.h |
61200fc |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8.907145771$ |
$1$ |
|
$2$ |
$373248$ |
$1.787949$ |
$-23100424192/14739$ |
$[0, 0, 0, -213600, -38018000]$ |
\(y^2=x^3-213600x-38018000\) |
62475.bt1 |
62475br2 |
62475.bt |
62475br |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3 \cdot 5^{6} \cdot 7^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4.009284722$ |
$1$ |
|
$2$ |
$186624$ |
$1.518450$ |
$-23100424192/14739$ |
$[0, 1, 1, -72683, 7522169]$ |
\(y^2+y=x^3+x^2-72683x+7522169\) |
65025.z1 |
65025bi2 |
65025.z |
65025bi |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{6} \cdot 17^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.889293109$ |
$1$ |
|
$12$ |
$1492992$ |
$2.511410$ |
$-23100424192/14739$ |
$[0, 0, 1, -3858150, 2918475531]$ |
\(y^2+y=x^3-3858150x+2918475531\) |
69819.b1 |
69819e2 |
69819.b |
69819e |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 37^{2} \) |
\( - 3 \cdot 17^{3} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.623297722$ |
$1$ |
|
$2$ |
$308448$ |
$1.546236$ |
$-23100424192/14739$ |
$[0, 1, 1, -81227, -8942473]$ |
\(y^2+y=x^3+x^2-81227x-8942473\) |
80937.o1 |
80937i2 |
80937.o |
80937i |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \cdot 23^{2} \) |
\( - 3^{7} \cdot 17^{3} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$18.71111470$ |
$1$ |
|
$0$ |
$522720$ |
$1.857830$ |
$-23100424192/14739$ |
$[0, 0, 1, -282486, -57820626]$ |
\(y^2+y=x^3-282486x-57820626\) |
81600.g1 |
81600gt2 |
81600.g |
81600gt |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 5^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.918878119$ |
$1$ |
|
$2$ |
$93312$ |
$0.892069$ |
$-23100424192/14739$ |
$[0, -1, 0, -5933, 177987]$ |
\(y^2=x^3-x^2-5933x+177987\) |
81600.ju1 |
81600ec2 |
81600.ju |
81600ec |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 5^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12.41674582$ |
$1$ |
|
$0$ |
$93312$ |
$0.892069$ |
$-23100424192/14739$ |
$[0, 1, 0, -5933, -177987]$ |
\(y^2=x^3+x^2-5933x-177987\) |
85731.a1 |
85731b2 |
85731.a |
85731b |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 41^{2} \) |
\( - 3 \cdot 17^{3} \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$9$ |
$3$ |
$0$ |
$421200$ |
$1.597563$ |
$-23100424192/14739$ |
$[0, -1, 1, -99739, -12097488]$ |
\(y^2+y=x^3-x^2-99739x-12097488\) |
94299.f1 |
94299a2 |
94299.f |
94299a |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 43^{2} \) |
\( - 3 \cdot 17^{3} \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$475524$ |
$1.621376$ |
$-23100424192/14739$ |
$[0, -1, 1, -109707, 14030537]$ |
\(y^2+y=x^3-x^2-109707x+14030537\) |
98736.cc1 |
98736cs2 |
98736.cc |
98736cs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 11^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$583200$ |
$1.632872$ |
$-23100424192/14739$ |
$[0, -1, 0, -114869, -14954883]$ |
\(y^2=x^3-x^2-114869x-14954883\) |
104907.m1 |
104907j2 |
104907.m |
104907j |
$2$ |
$3$ |
\( 3 \cdot 11^{2} \cdot 17^{2} \) |
\( - 3 \cdot 11^{6} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$2332800$ |
$2.356331$ |
$-23100424192/14739$ |
$[0, -1, 1, -2074827, 1151651885]$ |
\(y^2+y=x^3-x^2-2074827x+1151651885\) |
112659.g1 |
112659h2 |
112659.g |
112659h |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 47^{2} \) |
\( - 3 \cdot 17^{3} \cdot 47^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.860075017$ |
$1$ |
|
$0$ |
$625968$ |
$1.665850$ |
$-23100424192/14739$ |
$[0, 1, 1, -131067, 18230120]$ |
\(y^2+y=x^3+x^2-131067x+18230120\) |
119952.ge1 |
119952fm2 |
119952.ge |
119952fm |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{7} \cdot 7^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.956184$ |
$-23100424192/14739$ |
$[0, 0, 0, -418656, 104321392]$ |
\(y^2=x^3-418656x+104321392\) |
127449.o1 |
127449bc2 |
127449.o |
127449bc |
$2$ |
$3$ |
\( 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 7^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.817908722$ |
$1$ |
|
$2$ |
$3981312$ |
$2.679646$ |
$-23100424192/14739$ |
$[0, 0, 1, -7561974, -8008296858]$ |
\(y^2+y=x^3-7561974x-8008296858\) |
128673.j1 |
128673e2 |
128673.j |
128673e |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \cdot 29^{2} \) |
\( - 3^{7} \cdot 17^{3} \cdot 29^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.739785096$ |
$1$ |
|
$12$ |
$1161216$ |
$1.973730$ |
$-23100424192/14739$ |
$[0, 0, 1, -449094, 115902625]$ |
\(y^2+y=x^3-449094x+115902625\) |
137904.c1 |
137904z2 |
137904.c |
137904z |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3 \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1010880$ |
$1.716398$ |
$-23100424192/14739$ |
$[0, -1, 0, -160437, 24801789]$ |
\(y^2=x^3-x^2-160437x+24801789\) |
143259.d1 |
143259d2 |
143259.d |
143259d |
$2$ |
$3$ |
\( 3 \cdot 17 \cdot 53^{2} \) |
\( - 3 \cdot 17^{3} \cdot 53^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3.324353360$ |
$1$ |
|
$2$ |
$898560$ |
$1.725922$ |
$-23100424192/14739$ |
$[0, -1, 1, -166667, -26148175]$ |
\(y^2+y=x^3-x^2-166667x-26148175\) |
146523.q1 |
146523q2 |
146523.q |
146523q |
$2$ |
$3$ |
\( 3 \cdot 13^{2} \cdot 17^{2} \) |
\( - 3 \cdot 13^{6} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$13.67290609$ |
$1$ |
|
$0$ |
$4043520$ |
$2.439857$ |
$-23100424192/14739$ |
$[0, -1, 1, -2897899, -1898853513]$ |
\(y^2+y=x^3-x^2-2897899x-1898853513\) |
147033.i1 |
147033i2 |
147033.i |
147033i |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \cdot 31^{2} \) |
\( - 3^{7} \cdot 17^{3} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7.683177498$ |
$1$ |
|
$0$ |
$1468800$ |
$2.007076$ |
$-23100424192/14739$ |
$[0, 0, 1, -513174, -141574280]$ |
\(y^2+y=x^3-513174x-141574280\) |