Learn more

Refine search


Results (1-50 of 116 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
26.b2 26.b \( 2 \cdot 13 \) $0$ $\Z/7\Z$ $1$ $[1, -1, 1, -3, 3]$ \(y^2+xy+y=x^3-x^2-3x+3\) 7.48.0-7.a.1.2, 104.2.0.?, 728.96.2.?
208.d2 208.d \( 2^{4} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -43, -166]$ \(y^2=x^3-43x-166\) 7.24.0.a.1, 28.48.0-7.a.1.1, 104.2.0.?, 728.96.2.?
234.b2 234.b \( 2 \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -24, -64]$ \(y^2+xy=x^3-x^2-24x-64\) 7.24.0.a.1, 21.48.0-7.a.1.2, 104.2.0.?, 728.48.2.?, 2184.96.2.?
338.a2 338.a \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.197635432$ $[1, -1, 0, -454, 5812]$ \(y^2+xy=x^3-x^2-454x+5812\) 7.24.0.a.1, 56.48.0-7.a.1.6, 91.48.0.?, 104.2.0.?, 728.96.2.?
650.g2 650.g \( 2 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -67, 341]$ \(y^2+xy=x^3-x^2-67x+341\) 7.24.0.a.1, 35.48.0-7.a.1.1, 104.2.0.?, 728.48.2.?, 3640.96.2.?
832.a2 832.a \( 2^{6} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.625224564$ $[0, 0, 0, -172, -1328]$ \(y^2=x^3-172x-1328\) 7.24.0.a.1, 56.48.0-7.a.1.2, 104.2.0.?, 182.48.0.?, 728.96.2.?
832.j2 832.j \( 2^{6} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -172, 1328]$ \(y^2=x^3-172x+1328\) 7.24.0.a.1, 56.48.0-7.a.1.1, 104.2.0.?, 364.48.0.?, 728.96.2.?
1274.o2 1274.o \( 2 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -132, -857]$ \(y^2+xy+y=x^3-x^2-132x-857\) 7.48.0-7.a.1.1, 104.2.0.?, 728.96.2.?
1872.m2 1872.m \( 2^{4} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.601320936$ $[0, 0, 0, -387, 4482]$ \(y^2=x^3-387x+4482\) 7.24.0.a.1, 84.48.0.?, 104.2.0.?, 728.48.2.?, 2184.96.2.?
2704.n2 2704.n \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -7267, -364702]$ \(y^2=x^3-7267x-364702\) 7.24.0.a.1, 56.48.0-7.a.1.5, 104.2.0.?, 364.48.0.?, 728.96.2.?
3042.l2 3042.l \( 2 \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.557712781$ $[1, -1, 1, -4088, -152837]$ \(y^2+xy+y=x^3-x^2-4088x-152837\) 7.24.0.a.1, 104.2.0.?, 168.48.0.?, 273.48.0.?, 728.48.2.?, $\ldots$
3146.a2 3146.a \( 2 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.192849768$ $[1, -1, 0, -325, -3371]$ \(y^2+xy=x^3-x^2-325x-3371\) 7.24.0.a.1, 77.48.0.?, 104.2.0.?, 728.48.2.?, 8008.96.2.?
5200.c2 5200.c \( 2^{4} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.527173030$ $[0, 0, 0, -1075, -20750]$ \(y^2=x^3-1075x-20750\) 7.24.0.a.1, 104.2.0.?, 140.48.0.?, 728.48.2.?, 3640.96.2.?
5850.bn2 5850.bn \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -605, -8603]$ \(y^2+xy+y=x^3-x^2-605x-8603\) 7.24.0.a.1, 104.2.0.?, 105.48.0.?, 728.48.2.?, 10920.96.2.?
7488.v2 7488.v \( 2^{6} \cdot 3^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1548, 35856]$ \(y^2=x^3-1548x+35856\) 7.24.0.a.1, 104.2.0.?, 168.48.0.?, 546.48.0.?, 728.48.2.?, $\ldots$
7488.w2 7488.w \( 2^{6} \cdot 3^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.715546088$ $[0, 0, 0, -1548, -35856]$ \(y^2=x^3-1548x-35856\) 7.24.0.a.1, 104.2.0.?, 168.48.0.?, 728.48.2.?, 1092.48.0.?, $\ldots$
7514.i2 7514.i \( 2 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -777, 12937]$ \(y^2+xy+y=x^3-x^2-777x+12937\) 7.24.0.a.1, 104.2.0.?, 119.48.0.?, 728.48.2.?, 12376.96.2.?
8450.y2 8450.y \( 2 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -11355, 715147]$ \(y^2+xy+y=x^3-x^2-11355x+715147\) 7.24.0.a.1, 104.2.0.?, 280.48.0.?, 455.48.0.?, 728.48.2.?, $\ldots$
9386.f2 9386.f \( 2 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $6.422386059$ $[1, -1, 0, -970, -17548]$ \(y^2+xy=x^3-x^2-970x-17548\) 7.24.0.a.1, 104.2.0.?, 133.48.0.?, 728.48.2.?, 13832.96.2.?
10192.a2 10192.a \( 2^{4} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2107, 56938]$ \(y^2=x^3-2107x+56938\) 7.24.0.a.1, 28.48.0-7.a.1.2, 104.2.0.?, 728.96.2.?
10816.c2 10816.c \( 2^{6} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -29068, -2917616]$ \(y^2=x^3-29068x-2917616\) 7.24.0.a.1, 14.48.0-7.a.1.1, 104.2.0.?, 728.96.2.?
10816.bm2 10816.bm \( 2^{6} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.050111235$ $[0, 0, 0, -29068, 2917616]$ \(y^2=x^3-29068x+2917616\) 7.24.0.a.1, 28.48.0-7.a.1.3, 104.2.0.?, 728.96.2.?
11466.n2 11466.n \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1185, 24317]$ \(y^2+xy=x^3-x^2-1185x+24317\) 7.24.0.a.1, 21.48.0-7.a.1.1, 104.2.0.?, 728.48.2.?, 2184.96.2.?
13754.f2 13754.f \( 2 \cdot 13 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.862409559$ $[1, -1, 1, -1422, -31203]$ \(y^2+xy+y=x^3-x^2-1422x-31203\) 7.24.0.a.1, 104.2.0.?, 161.48.0.?, 728.48.2.?, 16744.96.2.?
16562.y2 16562.y \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -22255, -1949011]$ \(y^2+xy=x^3-x^2-22255x-1949011\) 7.24.0.a.1, 56.48.0-7.a.1.8, 91.48.0.?, 104.2.0.?, 728.96.2.?
20800.a2 20800.a \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.023581713$ $[0, 0, 0, -4300, 166000]$ \(y^2=x^3-4300x+166000\) 7.24.0.a.1, 104.2.0.?, 280.48.0.?, 728.48.2.?, 1820.48.0.?, $\ldots$
20800.ef2 20800.ef \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4300, -166000]$ \(y^2=x^3-4300x-166000\) 7.24.0.a.1, 104.2.0.?, 280.48.0.?, 728.48.2.?, 910.48.0.?, $\ldots$
21866.e2 21866.e \( 2 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $4.169231053$ $[1, -1, 0, -2260, 63824]$ \(y^2+xy=x^3-x^2-2260x+63824\) 7.24.0.a.1, 104.2.0.?, 203.48.0.?, 728.48.2.?, 21112.96.2.?
24336.w2 24336.w \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.977306411$ $[0, 0, 0, -65403, 9846954]$ \(y^2=x^3-65403x+9846954\) 7.24.0.a.1, 104.2.0.?, 168.48.0.?, 728.48.2.?, 1092.48.0.?, $\ldots$
24986.i2 24986.i \( 2 \cdot 13 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -2583, -76625]$ \(y^2+xy+y=x^3-x^2-2583x-76625\) 7.24.0.a.1, 104.2.0.?, 217.48.0.?, 728.48.2.?, 22568.96.2.?
25168.bm2 25168.bm \( 2^{4} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -5203, 220946]$ \(y^2=x^3-5203x+220946\) 7.24.0.a.1, 104.2.0.?, 308.48.0.?, 728.48.2.?, 8008.96.2.?
28314.bx2 28314.bx \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.819132150$ $[1, -1, 1, -2927, 93943]$ \(y^2+xy+y=x^3-x^2-2927x+93943\) 7.24.0.a.1, 104.2.0.?, 231.48.0.?, 728.48.2.?, 24024.96.2.?
31850.a2 31850.a \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3292, -110384]$ \(y^2+xy=x^3-x^2-3292x-110384\) 7.24.0.a.1, 35.48.0-7.a.1.2, 104.2.0.?, 728.48.2.?, 3640.96.2.?
35594.a2 35594.a \( 2 \cdot 13 \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3679, 132301]$ \(y^2+xy=x^3-x^2-3679x+132301\) 7.24.0.a.1, 104.2.0.?, 259.48.0.?, 728.48.2.?, 26936.96.2.?
40768.d2 40768.d \( 2^{6} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -8428, -455504]$ \(y^2=x^3-8428x-455504\) 7.24.0.a.1, 56.48.0-7.a.1.3, 104.2.0.?, 364.48.0.?, 728.96.2.?
40768.ec2 40768.ec \( 2^{6} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $4.156249450$ $[0, 0, 0, -8428, 455504]$ \(y^2=x^3-8428x+455504\) 7.24.0.a.1, 56.48.0-7.a.1.4, 104.2.0.?, 182.48.0.?, 728.96.2.?
40898.bd2 40898.bd \( 2 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.470512209$ $[1, -1, 1, -54957, -7570923]$ \(y^2+xy+y=x^3-x^2-54957x-7570923\) 7.24.0.a.1, 104.2.0.?, 616.48.0.?, 728.48.2.?, 1001.48.0.?, $\ldots$
43706.x2 43706.x \( 2 \cdot 13 \cdot 41^{2} \) $1$ $\mathsf{trivial}$ $1.605304357$ $[1, -1, 1, -4518, 179893]$ \(y^2+xy+y=x^3-x^2-4518x+179893\) 7.24.0.a.1, 104.2.0.?, 287.48.0.?, 728.48.2.?, 29848.96.2.?
46800.dp2 46800.dp \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -9675, 560250]$ \(y^2=x^3-9675x+560250\) 7.24.0.a.1, 104.2.0.?, 420.48.0.?, 728.48.2.?, 10920.96.2.?
48074.c2 48074.c \( 2 \cdot 13 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4969, -204979]$ \(y^2+xy=x^3-x^2-4969x-204979\) 7.24.0.a.1, 104.2.0.?, 301.48.0.?, 728.48.2.?, 31304.96.2.?
57434.e2 57434.e \( 2 \cdot 13 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -5937, -267807]$ \(y^2+xy+y=x^3-x^2-5937x-267807\) 7.24.0.a.1, 104.2.0.?, 329.48.0.?, 728.48.2.?, 34216.96.2.?
60112.a2 60112.a \( 2^{4} \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -12427, -815558]$ \(y^2=x^3-12427x-815558\) 7.24.0.a.1, 104.2.0.?, 476.48.0.?, 728.48.2.?, 12376.96.2.?
67600.d2 67600.d \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -181675, -45587750]$ \(y^2=x^3-181675x-45587750\) 7.24.0.a.1, 104.2.0.?, 280.48.0.?, 728.48.2.?, 1820.48.0.?, $\ldots$
67626.f2 67626.f \( 2 \cdot 3^{2} \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -6990, -342316]$ \(y^2+xy=x^3-x^2-6990x-342316\) 7.24.0.a.1, 104.2.0.?, 357.48.0.?, 728.48.2.?, 37128.96.2.?
73034.h2 73034.h \( 2 \cdot 13 \cdot 53^{2} \) $1$ $\mathsf{trivial}$ $7.811626033$ $[1, -1, 0, -7549, 388037]$ \(y^2+xy=x^3-x^2-7549x+388037\) 7.24.0.a.1, 104.2.0.?, 371.48.0.?, 728.48.2.?, 38584.96.2.?
75088.b2 75088.b \( 2^{4} \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.621369155$ $[0, 0, 0, -15523, 1138594]$ \(y^2=x^3-15523x+1138594\) 7.24.0.a.1, 104.2.0.?, 532.48.0.?, 728.48.2.?, 13832.96.2.?
76050.bx2 76050.bx \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -102192, -19206784]$ \(y^2+xy=x^3-x^2-102192x-19206784\) 7.24.0.a.1, 104.2.0.?, 728.48.2.?, 840.48.0.?, 1365.48.0.?, $\ldots$
78650.dj2 78650.dj \( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.597446900$ $[1, -1, 1, -8130, -429503]$ \(y^2+xy+y=x^3-x^2-8130x-429503\) 7.24.0.a.1, 104.2.0.?, 385.48.0.?, 728.48.2.?, 40040.96.2.?
84474.by2 84474.by \( 2 \cdot 3^{2} \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.605673341$ $[1, -1, 1, -8732, 482527]$ \(y^2+xy+y=x^3-x^2-8732x+482527\) 7.24.0.a.1, 104.2.0.?, 399.48.0.?, 728.48.2.?, 41496.96.2.?
90506.a2 90506.a \( 2 \cdot 13 \cdot 59^{2} \) $1$ $\mathsf{trivial}$ $5.660435040$ $[1, -1, 0, -9355, -530363]$ \(y^2+xy=x^3-x^2-9355x-530363\) 7.24.0.a.1, 104.2.0.?, 413.48.0.?, 728.48.2.?, 42952.96.2.?
Next   displayed columns for results