Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
762.b1 |
762a1 |
762.b |
762a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$-0.514950$ |
$-18609625/12192$ |
$0.83459$ |
$2.63659$ |
$[1, 0, 1, -6, -8]$ |
\(y^2+xy+y=x^3-6x-8\) |
3048.2.0.? |
$[]$ |
2286.j1 |
2286j1 |
2286.j |
2286j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3^{7} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$0.103028055$ |
$1$ |
|
$8$ |
$480$ |
$0.034356$ |
$-18609625/12192$ |
$0.83459$ |
$3.11433$ |
$[1, -1, 1, -50, 209]$ |
\(y^2+xy+y=x^3-x^2-50x+209\) |
3048.2.0.? |
$[(3, 7)]$ |
6096.f1 |
6096i1 |
6096.f |
6096i |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 127 \) |
\( - 2^{17} \cdot 3 \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$0.424177638$ |
$1$ |
|
$4$ |
$1440$ |
$0.178197$ |
$-18609625/12192$ |
$0.83459$ |
$2.96189$ |
$[0, -1, 0, -88, 496]$ |
\(y^2=x^3-x^2-88x+496\) |
3048.2.0.? |
$[(12, 32)]$ |
18288.n1 |
18288ba1 |
18288.n |
18288ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 127 \) |
\( - 2^{17} \cdot 3^{7} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.727504$ |
$-18609625/12192$ |
$0.83459$ |
$3.30199$ |
$[0, 0, 0, -795, -12598]$ |
\(y^2=x^3-795x-12598\) |
3048.2.0.? |
$[]$ |
19050.q1 |
19050u1 |
19050.q |
19050u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 5^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$0.964236422$ |
$1$ |
|
$4$ |
$8640$ |
$0.289769$ |
$-18609625/12192$ |
$0.83459$ |
$2.75529$ |
$[1, 1, 1, -138, -969]$ |
\(y^2+xy+y=x^3+x^2-138x-969\) |
3048.2.0.? |
$[(15, 17)]$ |
24384.j1 |
24384a1 |
24384.j |
24384a |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 127 \) |
\( - 2^{23} \cdot 3 \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$2.248973554$ |
$1$ |
|
$2$ |
$11520$ |
$0.524771$ |
$-18609625/12192$ |
$0.83459$ |
$2.96712$ |
$[0, -1, 0, -353, -3615]$ |
\(y^2=x^3-x^2-353x-3615\) |
3048.2.0.? |
$[(169, 2176)]$ |
24384.be1 |
24384bn1 |
24384.be |
24384bn |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 127 \) |
\( - 2^{23} \cdot 3 \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.524771$ |
$-18609625/12192$ |
$0.83459$ |
$2.96712$ |
$[0, 1, 0, -353, 3615]$ |
\(y^2=x^3+x^2-353x+3615\) |
3048.2.0.? |
$[]$ |
37338.e1 |
37338a1 |
37338.e |
37338a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 7^{6} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22680$ |
$0.458005$ |
$-18609625/12192$ |
$0.83459$ |
$2.77093$ |
$[1, 1, 0, -270, 2388]$ |
\(y^2+xy=x^3+x^2-270x+2388\) |
3048.2.0.? |
$[]$ |
57150.j1 |
57150s1 |
57150.j |
57150s |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3^{7} \cdot 5^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1.012922315$ |
$1$ |
|
$4$ |
$69120$ |
$0.839075$ |
$-18609625/12192$ |
$0.83459$ |
$3.08073$ |
$[1, -1, 0, -1242, 24916]$ |
\(y^2+xy=x^3-x^2-1242x+24916\) |
3048.2.0.? |
$[(29, 98)]$ |
73152.bv1 |
73152cv1 |
73152.bv |
73152cv |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 127 \) |
\( - 2^{23} \cdot 3^{7} \cdot 127 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$2.052118325$ |
$1$ |
|
$12$ |
$92160$ |
$1.074078$ |
$-18609625/12192$ |
$0.83459$ |
$3.26461$ |
$[0, 0, 0, -3180, -100784]$ |
\(y^2=x^3-3180x-100784\) |
3048.2.0.? |
$[(122, 1152), (890, 26496)]$ |
73152.by1 |
73152o1 |
73152.by |
73152o |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 127 \) |
\( - 2^{23} \cdot 3^{7} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92160$ |
$1.074078$ |
$-18609625/12192$ |
$0.83459$ |
$3.26461$ |
$[0, 0, 0, -3180, 100784]$ |
\(y^2=x^3-3180x+100784\) |
3048.2.0.? |
$[]$ |
92202.bb1 |
92202bc1 |
92202.bb |
92202bc |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 11^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1.173422636$ |
$1$ |
|
$2$ |
$76800$ |
$0.683997$ |
$-18609625/12192$ |
$0.83459$ |
$2.78905$ |
$[1, 0, 0, -668, 9648]$ |
\(y^2+xy=x^3-668x+9648\) |
3048.2.0.? |
$[(54, 336)]$ |
96774.c1 |
96774a1 |
96774.c |
96774a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 127^{2} \) |
\( - 2^{5} \cdot 3 \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$1.907143$ |
$-18609625/12192$ |
$0.83459$ |
$4.05583$ |
$[1, 1, 0, -89045, 14896653]$ |
\(y^2+xy=x^3+x^2-89045x+14896653\) |
3048.2.0.? |
$[]$ |
112014.s1 |
112014p1 |
112014.s |
112014p |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3^{7} \cdot 7^{6} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$181440$ |
$1.007311$ |
$-18609625/12192$ |
$0.83459$ |
$3.07606$ |
$[1, -1, 1, -2435, -66909]$ |
\(y^2+xy+y=x^3-x^2-2435x-66909\) |
3048.2.0.? |
$[]$ |
128778.x1 |
128778t1 |
128778.x |
128778t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 13^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$3.253807001$ |
$1$ |
|
$0$ |
$138240$ |
$0.767525$ |
$-18609625/12192$ |
$0.83459$ |
$2.79504$ |
$[1, 0, 0, -933, -16095]$ |
\(y^2+xy=x^3-933x-16095\) |
3048.2.0.? |
$[(412/3, 4621/3)]$ |
152400.by1 |
152400y1 |
152400.by |
152400y |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 127 \) |
\( - 2^{17} \cdot 3 \cdot 5^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$2.732063795$ |
$1$ |
|
$2$ |
$207360$ |
$0.982916$ |
$-18609625/12192$ |
$0.83459$ |
$2.97217$ |
$[0, 1, 0, -2208, 57588]$ |
\(y^2=x^3+x^2-2208x+57588\) |
3048.2.0.? |
$[(-37, 300)]$ |
220218.c1 |
220218z1 |
220218.c |
220218z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 17^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1.715804049$ |
$1$ |
|
$2$ |
$276480$ |
$0.901657$ |
$-18609625/12192$ |
$0.83459$ |
$2.80398$ |
$[1, 1, 0, -1595, -36483]$ |
\(y^2+xy=x^3+x^2-1595x-36483\) |
3048.2.0.? |
$[(69, 399)]$ |
275082.t1 |
275082t1 |
275082.t |
275082t |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 19^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 19^{6} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$379080$ |
$0.957270$ |
$-18609625/12192$ |
$0.83459$ |
$2.80746$ |
$[1, 1, 1, -1993, 49175]$ |
\(y^2+xy+y=x^3+x^2-1993x+49175\) |
3048.2.0.? |
$[]$ |
276606.m1 |
276606m1 |
276606.m |
276606m |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3^{7} \cdot 11^{6} \cdot 127 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$614400$ |
$1.233303$ |
$-18609625/12192$ |
$0.83459$ |
$3.07057$ |
$[1, -1, 0, -6012, -260496]$ |
\(y^2+xy=x^3-x^2-6012x-260496\) |
3048.2.0.? |
$[]$ |
290322.y1 |
290322y1 |
290322.y |
290322y |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 127^{2} \) |
\( - 2^{5} \cdot 3^{7} \cdot 127^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7741440$ |
$2.456451$ |
$-18609625/12192$ |
$0.83459$ |
$4.22563$ |
$[1, -1, 1, -801410, -403011039]$ |
\(y^2+xy+y=x^3-x^2-801410x-403011039\) |
3048.2.0.? |
$[]$ |
298704.bj1 |
298704bj1 |
298704.bj |
298704bj |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 127 \) |
\( - 2^{17} \cdot 3 \cdot 7^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$6.473424515$ |
$1$ |
|
$0$ |
$544320$ |
$1.151152$ |
$-18609625/12192$ |
$0.83459$ |
$2.97366$ |
$[0, 1, 0, -4328, -161484]$ |
\(y^2=x^3+x^2-4328x-161484\) |
3048.2.0.? |
$[(4110/7, 92448/7)]$ |
386334.i1 |
386334i1 |
386334.i |
386334i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3^{7} \cdot 13^{6} \cdot 127 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$2.526892170$ |
$1$ |
|
$10$ |
$1105920$ |
$1.316832$ |
$-18609625/12192$ |
$0.83459$ |
$3.06874$ |
$[1, -1, 0, -8397, 434565]$ |
\(y^2+xy=x^3-x^2-8397x+434565\) |
3048.2.0.? |
$[(-81, 801), (183/2, 2859/2)]$ |
403098.m1 |
403098m1 |
403098.m |
403098m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 23^{2} \cdot 127 \) |
\( - 2^{5} \cdot 3 \cdot 23^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$3.487035067$ |
$1$ |
|
$2$ |
$739200$ |
$1.052797$ |
$-18609625/12192$ |
$0.83459$ |
$2.81316$ |
$[1, 0, 1, -2921, 88460]$ |
\(y^2+xy+y=x^3-2921x+88460\) |
3048.2.0.? |
$[(734, 19470)]$ |
457200.ds1 |
457200ds1 |
457200.ds |
457200ds |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 127 \) |
\( - 2^{17} \cdot 3^{7} \cdot 5^{6} \cdot 127 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3048$ |
$2$ |
$0$ |
$1.810877911$ |
$1$ |
|
$2$ |
$1658880$ |
$1.532223$ |
$-18609625/12192$ |
$0.83459$ |
$3.22740$ |
$[0, 0, 0, -19875, -1574750]$ |
\(y^2=x^3-19875x-1574750\) |
3048.2.0.? |
$[(785, 21600)]$ |