Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
147.b1 |
147c2 |
147.b |
147c |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3^{13} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$78$ |
$0.437387$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -912, 10919]$ |
\(y^2+y=x^3-x^2-912x+10919\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.168.2.?, 546.336.9.? |
147.c1 |
147b2 |
147.c |
147b |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \) |
\( - 3^{13} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.56.0.3 |
13B.3.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$546$ |
$1.410343$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -44704, -3655907]$ |
\(y^2+y=x^3+x^2-44704x-3655907\) |
6.2.0.a.1, 13.56.0-13.a.2.2, 78.112.1.?, 91.168.2.?, 546.336.9.? |
441.a1 |
441f2 |
441.a |
441f |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{19} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$0.991510447$ |
$1$ |
|
$4$ |
$624$ |
$0.986693$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -8211, -286610]$ |
\(y^2+y=x^3-8211x-286610\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 182.168.2.?, $\ldots$ |
441.b1 |
441e2 |
441.b |
441e |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{19} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$4368$ |
$1.959648$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -402339, 98307144]$ |
\(y^2+y=x^3-402339x+98307144\) |
6.2.0.a.1, 13.28.0.a.2, 26.56.0-13.a.2.2, 39.56.0-13.a.2.1, 78.112.1.?, $\ldots$ |
2352.d1 |
2352j2 |
2352.d |
2352j |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{13} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$1092$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$21840$ |
$2.103489$ |
$-1713910976512/1594323$ |
$[0, -1, 0, -715269, 233262765]$ |
\(y^2=x^3-x^2-715269x+233262765\) |
6.2.0.a.1, 13.28.0.a.2, 52.56.0-13.a.2.1, 78.56.1.?, 91.84.2.?, $\ldots$ |
2352.w1 |
2352u2 |
2352.w |
2352u |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{13} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$1092$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$3120$ |
$1.130535$ |
$-1713910976512/1594323$ |
$[0, 1, 0, -14597, -684237]$ |
\(y^2=x^3+x^2-14597x-684237\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 364.168.2.?, $\ldots$ |
3675.a1 |
3675d2 |
3675.a |
3675d |
$2$ |
$13$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{13} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2730$ |
$336$ |
$9$ |
$3.354600696$ |
$1$ |
|
$2$ |
$69888$ |
$2.215061$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -1117608, -454753132]$ |
\(y^2+y=x^3-x^2-1117608x-454753132\) |
6.2.0.a.1, 13.28.0.a.2, 65.56.0-13.a.2.1, 78.56.1.?, 91.84.2.?, $\ldots$ |
3675.c1 |
3675n2 |
3675.c |
3675n |
$2$ |
$13$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{13} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2730$ |
$336$ |
$9$ |
$0.097765960$ |
$1$ |
|
$10$ |
$9984$ |
$1.242105$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -22808, 1319294]$ |
\(y^2+y=x^3+x^2-22808x+1319294\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 455.168.2.?, $\ldots$ |
7056.m1 |
7056bw2 |
7056.m |
7056bw |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{19} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$1092$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$24960$ |
$1.679840$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -131376, 18343024]$ |
\(y^2=x^3-131376x+18343024\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 364.168.2.?, $\ldots$ |
7056.bp1 |
7056bm2 |
7056.bp |
7056bm |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{19} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$1092$ |
$336$ |
$9$ |
$8.195035206$ |
$1$ |
|
$0$ |
$174720$ |
$2.652794$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -6437424, -6291657232]$ |
\(y^2=x^3-6437424x-6291657232\) |
6.2.0.a.1, 13.28.0.a.2, 52.56.0-13.a.2.3, 78.56.1.?, 91.84.2.?, $\ldots$ |
9408.k1 |
9408cc2 |
9408.k |
9408cc |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{13} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$9.791495328$ |
$1$ |
|
$0$ |
$6240$ |
$0.783960$ |
$-1713910976512/1594323$ |
$[0, -1, 0, -3649, -83705]$ |
\(y^2=x^3-x^2-3649x-83705\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
9408.bg1 |
9408c2 |
9408.bg |
9408c |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{13} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$37.78011487$ |
$1$ |
|
$0$ |
$43680$ |
$1.756916$ |
$-1713910976512/1594323$ |
$[0, -1, 0, -178817, -29068437]$ |
\(y^2=x^3-x^2-178817x-29068437\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
9408.bz1 |
9408bi2 |
9408.bz |
9408bi |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{13} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$0.271537570$ |
$1$ |
|
$4$ |
$6240$ |
$0.783960$ |
$-1713910976512/1594323$ |
$[0, 1, 0, -3649, 83705]$ |
\(y^2=x^3+x^2-3649x+83705\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
9408.cv1 |
9408cm2 |
9408.cv |
9408cm |
$2$ |
$13$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{13} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$0.294622635$ |
$1$ |
|
$4$ |
$43680$ |
$1.756916$ |
$-1713910976512/1594323$ |
$[0, 1, 0, -178817, 29068437]$ |
\(y^2=x^3+x^2-178817x+29068437\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
11025.bo1 |
11025s2 |
11025.bo |
11025s |
$2$ |
$13$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{19} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2730$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$559104$ |
$2.764366$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -10058475, 12288393031]$ |
\(y^2+y=x^3-10058475x+12288393031\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 130.56.0.?, $\ldots$ |
11025.bp1 |
11025bb2 |
11025.bp |
11025bb |
$2$ |
$13$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{19} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2730$ |
$336$ |
$9$ |
$20.09448853$ |
$1$ |
|
$0$ |
$79872$ |
$1.791412$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -205275, -35826219]$ |
\(y^2+y=x^3-205275x-35826219\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
17787.b1 |
17787k2 |
17787.b |
17787k |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$6006$ |
$336$ |
$9$ |
$9.146335682$ |
$1$ |
|
$0$ |
$109200$ |
$1.636335$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -110392, -14092002]$ |
\(y^2+y=x^3-x^2-110392x-14092002\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
17787.f1 |
17787m2 |
17787.f |
17787m |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$6006$ |
$336$ |
$9$ |
$0.144772407$ |
$1$ |
|
$10$ |
$764400$ |
$2.609291$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -5409224, 4844375036]$ |
\(y^2+y=x^3+x^2-5409224x+4844375036\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 143.56.0.?, $\ldots$ |
24843.a1 |
24843g2 |
24843.a |
24843g |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$182520$ |
$1.719862$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -154184, 23372936]$ |
\(y^2+y=x^3-x^2-154184x+23372936\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.168.2.?, 546.336.9.? |
24843.d1 |
24843o2 |
24843.d |
24843o |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.56.0.4 |
13B.3.7 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1277640$ |
$2.692818$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -7555032, -8001807082]$ |
\(y^2+y=x^3+x^2-7555032x-8001807082\) |
6.2.0.a.1, 13.56.0-13.a.2.1, 78.112.1.?, 91.168.2.?, 546.336.9.? |
28224.bg1 |
28224bd2 |
28224.bg |
28224bd |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{19} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$349440$ |
$2.306221$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -1609356, 786457154]$ |
\(y^2=x^3-1609356x+786457154\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
28224.bt1 |
28224es2 |
28224.bt |
28224es |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{19} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$11.54231320$ |
$1$ |
|
$0$ |
$349440$ |
$2.306221$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -1609356, -786457154]$ |
\(y^2=x^3-1609356x-786457154\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 104.56.0.?, $\ldots$ |
28224.ex1 |
28224bx2 |
28224.ex |
28224bx |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{19} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$17.70085737$ |
$1$ |
|
$0$ |
$49920$ |
$1.333267$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -32844, -2292878]$ |
\(y^2=x^3-32844x-2292878\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
28224.ff1 |
28224fq2 |
28224.ff |
28224fq |
$2$ |
$13$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{19} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$2184$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$49920$ |
$1.333267$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -32844, 2292878]$ |
\(y^2=x^3-32844x+2292878\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
42483.y1 |
42483c2 |
42483.y |
42483c |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$9282$ |
$336$ |
$9$ |
$49.74098915$ |
$1$ |
|
$0$ |
$2830464$ |
$2.826950$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -12919552, -17883952731]$ |
\(y^2+y=x^3-x^2-12919552x-17883952731\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 221.56.0.?, $\ldots$ |
42483.z1 |
42483x2 |
42483.z |
42483x |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$9282$ |
$336$ |
$9$ |
$1.027317434$ |
$1$ |
|
$0$ |
$404352$ |
$1.853994$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -263664, 52064471]$ |
\(y^2+y=x^3+x^2-263664x+52064471\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
53067.a1 |
53067d2 |
53067.a |
53067d |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$10374$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$3921372$ |
$2.882561$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -16138264, 24979035066]$ |
\(y^2+y=x^3-x^2-16138264x+24979035066\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 247.56.0.?, $\ldots$ |
53067.f1 |
53067w2 |
53067.f |
53067w |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$10374$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$560196$ |
$1.909607$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -329352, -72919276]$ |
\(y^2+y=x^3+x^2-329352x-72919276\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
53361.bz1 |
53361bt2 |
53361.bz |
53361bt |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{19} \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$6006$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$873600$ |
$2.185642$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -993531, 381477577]$ |
\(y^2+y=x^3-993531x+381477577\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
53361.cd1 |
53361u2 |
53361.cd |
53361u |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 3^{19} \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$6006$ |
$336$ |
$9$ |
$41.58472986$ |
$1$ |
|
$0$ |
$6115200$ |
$3.158596$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -48683019, -130846808997]$ |
\(y^2+y=x^3-48683019x-130846808997\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 286.56.0.?, $\ldots$ |
58800.dt1 |
58800fm2 |
58800.dt |
58800fm |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$5460$ |
$336$ |
$9$ |
$29.78051325$ |
$1$ |
|
$0$ |
$399360$ |
$1.935253$ |
$-1713910976512/1594323$ |
$[0, -1, 0, -364933, -84799763]$ |
\(y^2=x^3-x^2-364933x-84799763\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
58800.ir1 |
58800hu2 |
58800.ir |
58800hu |
$2$ |
$13$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{13} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$5460$ |
$336$ |
$9$ |
$1.856894054$ |
$1$ |
|
$2$ |
$2795520$ |
$2.908207$ |
$-1713910976512/1594323$ |
$[0, 1, 0, -17881733, 29122082163]$ |
\(y^2=x^3+x^2-17881733x+29122082163\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 260.56.0.?, $\ldots$ |
74529.bo1 |
74529q2 |
74529.bo |
74529q |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{19} \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$10221120$ |
$3.242123$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -67995291, 215980795917]$ |
\(y^2+y=x^3-67995291x+215980795917\) |
6.2.0.a.1, 13.28.0.a.2, 26.56.0-13.a.2.1, 39.56.0-13.a.2.2, 78.112.1.?, $\ldots$ |
74529.bs1 |
74529bg2 |
74529.bs |
74529bg |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{19} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$546$ |
$336$ |
$9$ |
$53.77518690$ |
$1$ |
|
$0$ |
$1460160$ |
$2.269169$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -1387659, -629681621]$ |
\(y^2+y=x^3-1387659x-629681621\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 182.168.2.?, $\ldots$ |
77763.bc1 |
77763q2 |
77763.bc |
77763q |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 23^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$12558$ |
$336$ |
$9$ |
$48.36081268$ |
$1$ |
|
$0$ |
$988416$ |
$2.005135$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -482624, -128993971]$ |
\(y^2+y=x^3-x^2-482624x-128993971\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
77763.bf1 |
77763ba2 |
77763.bf |
77763ba |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 23^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$12558$ |
$336$ |
$9$ |
$1.674604992$ |
$1$ |
|
$0$ |
$6918912$ |
$2.978088$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -23648592, 44292229139]$ |
\(y^2+y=x^3+x^2-23648592x+44292229139\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 299.56.0.?, $\ldots$ |
123627.b1 |
123627a2 |
123627.b |
123627a |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 29^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$15834$ |
$336$ |
$9$ |
$31.82751344$ |
$1$ |
|
$0$ |
$13514592$ |
$3.093990$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -37596344, -88787947186]$ |
\(y^2+y=x^3-x^2-37596344x-88787947186\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 377.56.0.?, $\ldots$ |
123627.e1 |
123627t2 |
123627.e |
123627t |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 29^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$15834$ |
$336$ |
$9$ |
$0.585223324$ |
$1$ |
|
$4$ |
$1930656$ |
$2.121037$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -767272, 258637768]$ |
\(y^2+y=x^3+x^2-767272x+258637768\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
127449.b1 |
127449v2 |
127449.b |
127449v |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{19} \cdot 7^{8} \cdot 17^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$9282$ |
$336$ |
$9$ |
$2.271720549$ |
$1$ |
|
$10$ |
$22643712$ |
$3.376255$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -116275971, 482982999700]$ |
\(y^2+y=x^3-116275971x+482982999700\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 442.56.0.?, $\ldots$ |
127449.e1 |
127449bq2 |
127449.e |
127449bq |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{19} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$9282$ |
$336$ |
$9$ |
$15.62269676$ |
$1$ |
|
$0$ |
$3234816$ |
$2.403301$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -2372979, -1408113702]$ |
\(y^2+y=x^3-2372979x-1408113702\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
141267.bk1 |
141267bp2 |
141267.bk |
141267bp |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 31^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$16926$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$15446340$ |
$3.127335$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -42960864, 108483510449]$ |
\(y^2+y=x^3-x^2-42960864x+108483510449\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 403.56.0.?, $\ldots$ |
141267.bq1 |
141267bl2 |
141267.bq |
141267bl |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 31^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$16926$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2206620$ |
$2.154381$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -876752, -316528957]$ |
\(y^2+y=x^3+x^2-876752x-316528957\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
159201.bs1 |
159201br2 |
159201.bs |
159201br |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{19} \cdot 7^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$10374$ |
$336$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4481568$ |
$2.458912$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -2964171, 1965856275]$ |
\(y^2+y=x^3-2964171x+1965856275\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
159201.by1 |
159201by2 |
159201.by |
159201by |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{19} \cdot 7^{8} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$10374$ |
$336$ |
$9$ |
$204.1677522$ |
$1$ |
|
$0$ |
$31370976$ |
$3.431870$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -145244379, -674288702411]$ |
\(y^2+y=x^3-145244379x-674288702411\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 494.56.0.?, $\ldots$ |
176400.fk1 |
176400hl2 |
176400.fk |
176400hl |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{19} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$5460$ |
$336$ |
$9$ |
$74.44354404$ |
$1$ |
|
$0$ |
$22364160$ |
$3.457516$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -160935600, -786457154000]$ |
\(y^2=x^3-160935600x-786457154000\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 260.56.0.?, $\ldots$ |
176400.fy1 |
176400eq2 |
176400.fy |
176400eq |
$2$ |
$13$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{19} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$5460$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$3194880$ |
$2.484558$ |
$-1713910976512/1594323$ |
$[0, 0, 0, -3284400, 2292878000]$ |
\(y^2=x^3-3284400x+2292878000\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
201243.b1 |
201243d2 |
201243.b |
201243d |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 37^{2} \) |
\( - 3^{13} \cdot 7^{2} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$20202$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$4029480$ |
$2.242847$ |
$-1713910976512/1594323$ |
$[0, -1, 1, -1248984, 538106834]$ |
\(y^2+y=x^3-x^2-1248984x+538106834\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
201243.c1 |
201243a2 |
201243.c |
201243a |
$2$ |
$13$ |
\( 3 \cdot 7^{2} \cdot 37^{2} \) |
\( - 3^{13} \cdot 7^{8} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$20202$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$28206360$ |
$3.215801$ |
$-1713910976512/1594323$ |
$[0, 1, 1, -61200232, -184448243696]$ |
\(y^2+y=x^3+x^2-61200232x-184448243696\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 481.56.0.?, $\ldots$ |
233289.b1 |
233289b2 |
233289.b |
233289b |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 3^{19} \cdot 7^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$12558$ |
$336$ |
$9$ |
$11.86489741$ |
$1$ |
|
$0$ |
$55351296$ |
$3.527397$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -212837331, -1196103024090]$ |
\(y^2+y=x^3-212837331x-1196103024090\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |
233289.f1 |
233289f2 |
233289.f |
233289f |
$2$ |
$13$ |
\( 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 3^{19} \cdot 7^{2} \cdot 23^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.28.0.2 |
13B.4.2 |
$12558$ |
$336$ |
$9$ |
$4.510997302$ |
$1$ |
|
$6$ |
$7907328$ |
$2.554440$ |
$-1713910976512/1594323$ |
$[0, 0, 1, -4343619, 3487180828]$ |
\(y^2+y=x^3-4343619x+3487180828\) |
6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ |