Learn more

Refine search


Results (1-50 of 161 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
14.a5 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1, 0]$ \(y^2+xy+y=x^3-x\)
98.a5 98.a \( 2 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -25, -111]$ \(y^2+xy=x^3+x^2-25x-111\)
112.c5 112.c \( 2^{4} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -8, -16]$ \(y^2=x^3-x^2-8x-16\)
126.b5 126.b \( 2 \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -5, -7]$ \(y^2+xy+y=x^3-x^2-5x-7\)
350.f5 350.f \( 2 \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -13, 31]$ \(y^2+xy+y=x^3+x^2-13x+31\)
448.a5 448.a \( 2^{6} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -33, -161]$ \(y^2=x^3+x^2-33x-161\)
448.g5 448.g \( 2^{6} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -33, 161]$ \(y^2=x^3-x^2-33x+161\)
784.b5 784.b \( 2^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.389689685$ $[0, 1, 0, -408, 6292]$ \(y^2=x^3+x^2-408x+6292\)
882.i5 882.i \( 2 \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -230, 2769]$ \(y^2+xy+y=x^3-x^2-230x+2769\)
1008.h5 1008.h \( 2^{4} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.701556175$ $[0, 0, 0, -75, 506]$ \(y^2=x^3-75x+506\)
1694.e5 1694.e \( 2 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.893869405$ $[1, 0, 0, -63, -395]$ \(y^2+xy=x^3-63x-395\)
2366.j5 2366.j \( 2 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -88, 636]$ \(y^2+xy=x^3-88x+636\)
2450.t5 2450.t \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.876248795$ $[1, 0, 0, -638, -12608]$ \(y^2+xy=x^3-638x-12608\)
2800.g5 2800.g \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.054541211$ $[0, 1, 0, -208, -2412]$ \(y^2=x^3+x^2-208x-2412\)
3136.e5 3136.e \( 2^{6} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1633, -51969]$ \(y^2=x^3+x^2-1633x-51969\)
3136.z5 3136.z \( 2^{6} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.403390075$ $[0, -1, 0, -1633, 51969]$ \(y^2=x^3-x^2-1633x+51969\)
3150.i5 3150.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -117, -959]$ \(y^2+xy=x^3-x^2-117x-959\)
4032.r5 4032.r \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.477355178$ $[0, 0, 0, -300, 4048]$ \(y^2=x^3-300x+4048\)
4032.w5 4032.w \( 2^{6} \cdot 3^{2} \cdot 7 \) $1$ $\Z/2\Z$ $3.484059793$ $[0, 0, 0, -300, -4048]$ \(y^2=x^3-300x-4048\)
4046.f5 4046.f \( 2 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.467987492$ $[1, 1, 0, -150, 1376]$ \(y^2+xy=x^3+x^2-150x+1376\)
5054.c5 5054.c \( 2 \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -188, -2087]$ \(y^2+xy+y=x^3+x^2-188x-2087\)
7056.bd5 7056.bd \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3675, -173558]$ \(y^2=x^3-3675x-173558\)
7406.a5 7406.a \( 2 \cdot 7 \cdot 23^{2} \) $2$ $\Z/2\Z$ $2.790171969$ $[1, 0, 1, -276, -3586]$ \(y^2+xy+y=x^3-276x-3586\)
11200.k5 11200.k \( 2^{6} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.331263768$ $[0, 1, 0, -833, 18463]$ \(y^2=x^3+x^2-833x+18463\)
11200.cz5 11200.cz \( 2^{6} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $7.618404848$ $[0, -1, 0, -833, -18463]$ \(y^2=x^3-x^2-833x-18463\)
11774.m5 11774.m \( 2 \cdot 7 \cdot 29^{2} \) $1$ $\Z/2\Z$ $4.267658818$ $[1, 1, 1, -438, 6959]$ \(y^2+xy+y=x^3+x^2-438x+6959\)
11858.bm5 11858.bm \( 2 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -3088, 132397]$ \(y^2+xy+y=x^3+x^2-3088x+132397\)
13454.d5 13454.d \( 2 \cdot 7 \cdot 31^{2} \) $1$ $\Z/2\Z$ $10.96107773$ $[1, 1, 0, -500, -8932]$ \(y^2+xy=x^3+x^2-500x-8932\)
13552.w5 13552.w \( 2^{4} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1008, 25280]$ \(y^2=x^3-x^2-1008x+25280\)
15246.m5 15246.m \( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $0.874271945$ $[1, -1, 0, -567, 10665]$ \(y^2+xy=x^3-x^2-567x+10665\)
16562.bv5 16562.bv \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $9.229093350$ $[1, 1, 1, -4313, -222461]$ \(y^2+xy+y=x^3+x^2-4313x-222461\)
18928.bb5 18928.bb \( 2^{4} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $10.40550172$ $[0, -1, 0, -1408, -40704]$ \(y^2=x^3-x^2-1408x-40704\)
19166.a5 19166.a \( 2 \cdot 7 \cdot 37^{2} \) $1$ $\Z/2\Z$ $2.817069585$ $[1, 0, 0, -713, 14773]$ \(y^2+xy=x^3-713x+14773\)
19600.dl5 19600.dl \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $3.598779144$ $[0, -1, 0, -10208, 806912]$ \(y^2=x^3-x^2-10208x+806912\)
21294.q5 21294.q \( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -792, -17172]$ \(y^2+xy=x^3-x^2-792x-17172\)
22050.ba5 22050.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.725721409$ $[1, -1, 0, -5742, 340416]$ \(y^2+xy=x^3-x^2-5742x+340416\)
23534.o5 23534.o \( 2 \cdot 7 \cdot 41^{2} \) $1$ $\Z/2\Z$ $5.706441676$ $[1, 1, 0, -875, 19817]$ \(y^2+xy=x^3+x^2-875x+19817\)
25200.eu5 25200.eu \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1875, 63250]$ \(y^2=x^3-1875x+63250\)
25886.d5 25886.d \( 2 \cdot 7 \cdot 43^{2} \) $1$ $\Z/2\Z$ $13.74861386$ $[1, 1, 1, -963, -23683]$ \(y^2+xy+y=x^3+x^2-963x-23683\)
28224.dg5 28224.dg \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -14700, -1388464]$ \(y^2=x^3-14700x-1388464\)
28224.dh5 28224.dh \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $2.922576659$ $[0, 0, 0, -14700, 1388464]$ \(y^2=x^3-14700x+1388464\)
28322.c5 28322.c \( 2 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7376, -494070]$ \(y^2+xy+y=x^3-7376x-494070\)
30926.a5 30926.a \( 2 \cdot 7 \cdot 47^{2} \) $1$ $\Z/2\Z$ $7.975956507$ $[1, 0, 1, -1151, -30498]$ \(y^2+xy+y=x^3-1151x-30498\)
32368.f5 32368.f \( 2^{4} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.063925226$ $[0, 1, 0, -2408, -92876]$ \(y^2=x^3+x^2-2408x-92876\)
35378.k5 35378.k \( 2 \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -9213, 688141]$ \(y^2+xy=x^3-9213x+688141\)
36414.cg5 36414.cg \( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $10.99126785$ $[1, -1, 1, -1355, -38505]$ \(y^2+xy+y=x^3-x^2-1355x-38505\)
39326.m5 39326.m \( 2 \cdot 7 \cdot 53^{2} \) $1$ $\Z/2\Z$ $7.993964870$ $[1, 1, 1, -1463, 42985]$ \(y^2+xy+y=x^3+x^2-1463x+42985\)
40432.b5 40432.b \( 2^{4} \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.879133178$ $[0, 1, 0, -3008, 127540]$ \(y^2=x^3+x^2-3008x+127540\)
42350.bl5 42350.bl \( 2 \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $4.477116959$ $[1, 1, 0, -1575, -49375]$ \(y^2+xy=x^3+x^2-1575x-49375\)
45486.m5 45486.m \( 2 \cdot 3^{2} \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1692, 54652]$ \(y^2+xy=x^3-x^2-1692x+54652\)
Next   Download to