Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
1850.g1 |
1850d1 |
1850.g |
1850d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{8} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22080$ |
$1.747602$ |
$-132384574175625/11484004352$ |
$[1, -1, 0, -77617, 8944541]$ |
\(y^2+xy=x^3-x^2-77617x+8944541\) |
8.2.0.a.1 |
1850.h1 |
1850m1 |
1850.h |
1850m |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.062324207$ |
$1$ |
|
$10$ |
$4416$ |
$0.942883$ |
$-132384574175625/11484004352$ |
$[1, -1, 1, -3105, 72177]$ |
\(y^2+xy+y=x^3-x^2-3105x+72177\) |
8.2.0.a.1 |
14800.c1 |
14800bf1 |
14800.c |
14800bf |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 37 \) |
\( - 2^{35} \cdot 5^{8} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.799433543$ |
$1$ |
|
$0$ |
$529920$ |
$2.440750$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -1241875, -571208750]$ |
\(y^2=x^3-1241875x-571208750\) |
8.2.0.a.1 |
14800.bk1 |
14800z1 |
14800.bk |
14800z |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 37 \) |
\( - 2^{35} \cdot 5^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$12.83084165$ |
$1$ |
|
$0$ |
$105984$ |
$1.636030$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -49675, -4569670]$ |
\(y^2=x^3-49675x-4569670\) |
8.2.0.a.1 |
16650.s1 |
16650q1 |
16650.s |
16650q |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{6} \cdot 5^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$10.32305813$ |
$1$ |
|
$0$ |
$61824$ |
$1.492189$ |
$-132384574175625/11484004352$ |
$[1, -1, 0, -27942, -1920844]$ |
\(y^2+xy=x^3-x^2-27942x-1920844\) |
8.2.0.a.1 |
16650.ce1 |
16650cg1 |
16650.ce |
16650cg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{23} \cdot 3^{6} \cdot 5^{8} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$309120$ |
$2.296909$ |
$-132384574175625/11484004352$ |
$[1, -1, 1, -698555, -240804053]$ |
\(y^2+xy+y=x^3-x^2-698555x-240804053\) |
8.2.0.a.1 |
59200.c1 |
59200cp1 |
59200.c |
59200cp |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{41} \cdot 5^{2} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$847872$ |
$1.982605$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -198700, -36557360]$ |
\(y^2=x^3-198700x-36557360\) |
8.2.0.a.1 |
59200.d1 |
59200bw1 |
59200.d |
59200bw |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{41} \cdot 5^{8} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.171713013$ |
$1$ |
|
$2$ |
$4239360$ |
$2.787323$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -4967500, 4569670000]$ |
\(y^2=x^3-4967500x+4569670000\) |
8.2.0.a.1 |
59200.dw1 |
59200dz1 |
59200.dw |
59200dz |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{41} \cdot 5^{8} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$4239360$ |
$2.787323$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -4967500, -4569670000]$ |
\(y^2=x^3-4967500x-4569670000\) |
8.2.0.a.1 |
59200.dx1 |
59200q1 |
59200.dx |
59200q |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( - 2^{41} \cdot 5^{2} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.341536888$ |
$1$ |
|
$0$ |
$847872$ |
$1.982605$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -198700, 36557360]$ |
\(y^2=x^3-198700x+36557360\) |
8.2.0.a.1 |
68450.b1 |
68450l1 |
68450.b |
68450l |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37^{2} \) |
\( - 2^{23} \cdot 5^{2} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.647015374$ |
$1$ |
|
$2$ |
$6041088$ |
$2.748341$ |
$-132384574175625/11484004352$ |
$[1, -1, 0, -4250317, 3617742181]$ |
\(y^2+xy=x^3-x^2-4250317x+3617742181\) |
8.2.0.a.1 |
68450.bp1 |
68450bo1 |
68450.bp |
68450bo |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 37^{2} \) |
\( - 2^{23} \cdot 5^{8} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.360547811$ |
$1$ |
|
$0$ |
$30205440$ |
$3.553062$ |
$-132384574175625/11484004352$ |
$[1, -1, 1, -106257930, 452111514697]$ |
\(y^2+xy+y=x^3-x^2-106257930x+452111514697\) |
8.2.0.a.1 |
90650.b1 |
90650bg1 |
90650.b |
90650bg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{8} \cdot 7^{6} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.056182887$ |
$1$ |
|
$2$ |
$8478720$ |
$2.720558$ |
$-132384574175625/11484004352$ |
$[1, -1, 0, -3803242, -3060371084]$ |
\(y^2+xy=x^3-x^2-3803242x-3060371084\) |
8.2.0.a.1 |
90650.dk1 |
90650ct1 |
90650.dk |
90650ct |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{2} \cdot 7^{6} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1695744$ |
$1.915838$ |
$-132384574175625/11484004352$ |
$[1, -1, 1, -152130, -24452543]$ |
\(y^2+xy+y=x^3-x^2-152130x-24452543\) |
8.2.0.a.1 |
133200.dk1 |
133200cq1 |
133200.dk |
133200cq |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{6} \cdot 5^{2} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1483776$ |
$2.185337$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -447075, 123381090]$ |
\(y^2=x^3-447075x+123381090\) |
8.2.0.a.1 |
133200.dl1 |
133200s1 |
133200.dl |
133200s |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{35} \cdot 3^{6} \cdot 5^{8} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7418880$ |
$2.990055$ |
$-132384574175625/11484004352$ |
$[0, 0, 0, -11176875, 15422636250]$ |
\(y^2=x^3-11176875x+15422636250\) |
8.2.0.a.1 |
223850.d1 |
223850ca1 |
223850.d |
223850ca |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{2} \cdot 11^{6} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$16.25022390$ |
$1$ |
|
$0$ |
$6314880$ |
$2.141830$ |
$-132384574175625/11484004352$ |
$[1, -1, 0, -375667, -94940939]$ |
\(y^2+xy=x^3-x^2-375667x-94940939\) |
8.2.0.a.1 |
223850.ds1 |
223850br1 |
223850.ds |
223850br |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{8} \cdot 11^{6} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31574400$ |
$2.946548$ |
$-132384574175625/11484004352$ |
$[1, -1, 1, -9391680, -11877009053]$ |
\(y^2+xy+y=x^3-x^2-9391680x-11877009053\) |
8.2.0.a.1 |
312650.a1 |
312650a1 |
312650.a |
312650a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{2} \cdot 13^{6} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.516704518$ |
$1$ |
|
$2$ |
$10174464$ |
$2.225357$ |
$-132384574175625/11484004352$ |
$[1, -1, 0, -524692, 156999376]$ |
\(y^2+xy=x^3-x^2-524692x+156999376\) |
8.2.0.a.1 |
312650.cm1 |
312650cm1 |
312650.cm |
312650cm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 37 \) |
\( - 2^{23} \cdot 5^{8} \cdot 13^{6} \cdot 37^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$50872320$ |
$3.030079$ |
$-132384574175625/11484004352$ |
$[1, -1, 1, -13117305, 19611804697]$ |
\(y^2+xy+y=x^3-x^2-13117305x+19611804697\) |
8.2.0.a.1 |