Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
4650.b1 |
4650m2 |
4650.b |
4650m |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$1240$ |
$48$ |
$1$ |
$1.016463500$ |
$1$ |
|
$4$ |
$36000$ |
$1.825756$ |
$-12882119799145/59982446592$ |
$[1, 1, 0, -35700, 7794000]$ |
\(y^2+xy=x^3+x^2-35700x+7794000\) |
5.24.0-5.a.1.1, 248.2.0.?, 1240.48.1.? |
4650.bu2 |
4650bp1 |
4650.bu |
4650bp |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 31 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$4$ |
$7200$ |
$1.021036$ |
$-12882119799145/59982446592$ |
$[1, 0, 0, -1428, 62352]$ |
\(y^2+xy=x^3-1428x+62352\) |
5.24.0-5.a.1.2, 248.2.0.?, 1240.48.1.? |
13950.bk2 |
13950ba1 |
13950.bk |
13950ba |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{16} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$5.084089958$ |
$1$ |
|
$0$ |
$57600$ |
$1.570343$ |
$-12882119799145/59982446592$ |
$[1, -1, 0, -12852, -1683504]$ |
\(y^2+xy=x^3-x^2-12852x-1683504\) |
5.12.0.a.1, 15.24.0-5.a.1.1, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
13950.bu1 |
13950dc2 |
13950.bu |
13950dc |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{16} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$1.255215766$ |
$1$ |
|
$4$ |
$288000$ |
$2.375061$ |
$-12882119799145/59982446592$ |
$[1, -1, 1, -321305, -210759303]$ |
\(y^2+xy+y=x^3-x^2-321305x-210759303\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
37200.i2 |
37200bo1 |
37200.i |
37200bo |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{10} \cdot 5^{2} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$172800$ |
$1.714184$ |
$-12882119799145/59982446592$ |
$[0, -1, 0, -22848, -3990528]$ |
\(y^2=x^3-x^2-22848x-3990528\) |
5.12.0.a.1, 20.24.0-5.a.1.2, 248.2.0.?, 1240.48.1.? |
37200.du1 |
37200dr2 |
37200.du |
37200dr |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{10} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$864000$ |
$2.518902$ |
$-12882119799145/59982446592$ |
$[0, 1, 0, -571208, -499958412]$ |
\(y^2=x^3+x^2-571208x-499958412\) |
5.12.0.a.1, 20.24.0-5.a.1.1, 248.2.0.?, 1240.48.1.? |
111600.bb2 |
111600ee1 |
111600.bb |
111600ee |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{16} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$2.758094010$ |
$1$ |
|
$2$ |
$1382400$ |
$2.263489$ |
$-12882119799145/59982446592$ |
$[0, 0, 0, -205635, 107949890]$ |
\(y^2=x^3-205635x+107949890\) |
5.12.0.a.1, 60.24.0-5.a.1.2, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
111600.fw1 |
111600gb2 |
111600.fw |
111600gb |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{16} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$3.068211$ |
$-12882119799145/59982446592$ |
$[0, 0, 0, -5140875, 13493736250]$ |
\(y^2=x^3-5140875x+13493736250\) |
5.12.0.a.1, 60.24.0-5.a.1.1, 248.2.0.?, 1240.24.1.?, 3720.48.1.? |
144150.bp1 |
144150cr2 |
144150.bp |
144150cr |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{8} \cdot 31^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$34560000$ |
$3.542747$ |
$-12882119799145/59982446592$ |
$[1, 0, 1, -34308201, -232637058452]$ |
\(y^2+xy+y=x^3-34308201x-232637058452\) |
5.12.0.a.1, 40.24.0-5.a.1.8, 155.24.0.?, 248.2.0.?, 1240.48.1.? |
144150.dt2 |
144150ck1 |
144150.dt |
144150ck |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$3.103315824$ |
$1$ |
|
$2$ |
$6912000$ |
$2.738029$ |
$-12882119799145/59982446592$ |
$[1, 1, 1, -1372328, -1861645399]$ |
\(y^2+xy+y=x^3+x^2-1372328x-1861645399\) |
5.12.0.a.1, 40.24.0-5.a.1.7, 155.24.0.?, 248.2.0.?, 1240.48.1.? |
148800.ev1 |
148800dw2 |
148800.ev |
148800dw |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{10} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$28.64879725$ |
$1$ |
|
$0$ |
$6912000$ |
$2.865475$ |
$-12882119799145/59982446592$ |
$[0, -1, 0, -2284833, -3997382463]$ |
\(y^2=x^3-x^2-2284833x-3997382463\) |
5.12.0.a.1, 40.24.0-5.a.1.2, 248.2.0.?, 620.24.0.?, 1240.48.1.? |
148800.ez2 |
148800le1 |
148800.ez |
148800le |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{10} \cdot 5^{2} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.060757$ |
$-12882119799145/59982446592$ |
$[0, -1, 0, -91393, 32015617]$ |
\(y^2=x^3-x^2-91393x+32015617\) |
5.12.0.a.1, 40.24.0-5.a.1.3, 248.2.0.?, 310.24.0.?, 1240.48.1.? |
148800.gh2 |
148800bg1 |
148800.gh |
148800bg |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{10} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$1.205926218$ |
$1$ |
|
$4$ |
$1382400$ |
$2.060757$ |
$-12882119799145/59982446592$ |
$[0, 1, 0, -91393, -32015617]$ |
\(y^2=x^3+x^2-91393x-32015617\) |
5.12.0.a.1, 40.24.0-5.a.1.1, 248.2.0.?, 620.24.0.?, 1240.48.1.? |
148800.go1 |
148800fy2 |
148800.go |
148800fy |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{10} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1240$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$2.865475$ |
$-12882119799145/59982446592$ |
$[0, 1, 0, -2284833, 3997382463]$ |
\(y^2=x^3+x^2-2284833x+3997382463\) |
5.12.0.a.1, 40.24.0-5.a.1.4, 248.2.0.?, 310.24.0.?, 1240.48.1.? |
227850.dd1 |
227850ex2 |
227850.dd |
227850ex |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{8} \cdot 7^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$8680$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$11880000$ |
$2.798710$ |
$-12882119799145/59982446592$ |
$[1, 0, 1, -1749326, -2678589952]$ |
\(y^2+xy+y=x^3-1749326x-2678589952\) |
5.12.0.a.1, 35.24.0-5.a.1.1, 248.2.0.?, 1240.24.1.?, 8680.48.1.? |
227850.fi2 |
227850do1 |
227850.fi |
227850do |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 7^{6} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$8680$ |
$48$ |
$1$ |
$2.643992174$ |
$1$ |
|
$2$ |
$2376000$ |
$1.993992$ |
$-12882119799145/59982446592$ |
$[1, 1, 1, -69973, -21456709]$ |
\(y^2+xy+y=x^3+x^2-69973x-21456709\) |
5.12.0.a.1, 35.24.0-5.a.1.2, 248.2.0.?, 1240.24.1.?, 8680.48.1.? |
432450.dd2 |
432450dd1 |
432450.dd |
432450dd |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{15} \cdot 3^{16} \cdot 5^{2} \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$11.54608226$ |
$1$ |
|
$0$ |
$55296000$ |
$3.287338$ |
$-12882119799145/59982446592$ |
$[1, -1, 0, -12350952, 50252074816]$ |
\(y^2+xy=x^3-x^2-12350952x+50252074816\) |
5.12.0.a.1, 120.24.0.?, 248.2.0.?, 465.24.0.?, 1240.24.1.?, $\ldots$ |
432450.ep1 |
432450ep2 |
432450.ep |
432450ep |
$2$ |
$5$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{15} \cdot 3^{16} \cdot 5^{8} \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$2.304563698$ |
$1$ |
|
$4$ |
$276480000$ |
$4.092056$ |
$-12882119799145/59982446592$ |
$[1, -1, 1, -308773805, 6281200578197]$ |
\(y^2+xy+y=x^3-x^2-308773805x+6281200578197\) |
5.12.0.a.1, 120.24.0.?, 248.2.0.?, 465.24.0.?, 1240.24.1.?, $\ldots$ |
446400.df1 |
446400df2 |
446400.df |
446400df |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{16} \cdot 5^{8} \cdot 31 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$9.310420677$ |
$1$ |
|
$6$ |
$55296000$ |
$3.414783$ |
$-12882119799145/59982446592$ |
$[0, 0, 0, -20563500, -107949890000]$ |
\(y^2=x^3-20563500x-107949890000\) |
5.12.0.a.1, 120.24.0.?, 248.2.0.?, 930.24.0.?, 1240.24.1.?, $\ldots$ |
446400.dq2 |
446400dq1 |
446400.dq |
446400dq |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{16} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$6.910271449$ |
$1$ |
|
$0$ |
$11059200$ |
$2.610065$ |
$-12882119799145/59982446592$ |
$[0, 0, 0, -822540, 863599120]$ |
\(y^2=x^3-822540x+863599120\) |
5.12.0.a.1, 120.24.0.?, 248.2.0.?, 1240.24.1.?, 1860.24.0.?, $\ldots$ |
446400.qc2 |
446400qc1 |
446400.qc |
446400qc |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{16} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$17.30269914$ |
$1$ |
|
$0$ |
$11059200$ |
$2.610065$ |
$-12882119799145/59982446592$ |
$[0, 0, 0, -822540, -863599120]$ |
\(y^2=x^3-822540x-863599120\) |
5.12.0.a.1, 120.24.0.?, 248.2.0.?, 930.24.0.?, 1240.24.1.?, $\ldots$ |
446400.qr1 |
446400qr2 |
446400.qr |
446400qr |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{33} \cdot 3^{16} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3720$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$55296000$ |
$3.414783$ |
$-12882119799145/59982446592$ |
$[0, 0, 0, -20563500, 107949890000]$ |
\(y^2=x^3-20563500x+107949890000\) |
5.12.0.a.1, 120.24.0.?, 248.2.0.?, 1240.24.1.?, 1860.24.0.?, $\ldots$ |