Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
500393.a1 |
- |
500393.a |
- |
$1$ |
$1$ |
\( 500393 \) |
\( 500393 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.708062262$ |
$1$ |
|
$4$ |
$35736$ |
$-0.214654$ |
$955671625/500393$ |
$[1, 0, 1, -21, -13]$ |
\(y^2+xy+y=x^3-21x-13\) |
500719.a1 |
- |
500719.a |
- |
$1$ |
$1$ |
\( 500719 \) |
\( 500719 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$99450$ |
$0.079314$ |
$1944232280641/500719$ |
$[1, 1, 1, -260, -1722]$ |
\(y^2+xy+y=x^3+x^2-260x-1722\) |
500921.a1 |
- |
500921.a |
- |
$1$ |
$1$ |
\( 500921 \) |
\( 500921 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$4.156797531$ |
$1$ |
|
$0$ |
$50640$ |
$-0.205827$ |
$1378749897/500921$ |
$[1, -1, 0, -23, 32]$ |
\(y^2+xy=x^3-x^2-23x+32\) |
500921.b1 |
- |
500921.b |
- |
$1$ |
$1$ |
\( 500921 \) |
\( 500921 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$9.285837453$ |
$1$ |
|
$0$ |
$55576$ |
$-0.101954$ |
$35062107417/500921$ |
$[1, -1, 0, -68, -197]$ |
\(y^2+xy=x^3-x^2-68x-197\) |
501029.a1 |
- |
501029.a |
- |
$1$ |
$1$ |
\( 501029 \) |
\( 501029 \) |
$4$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.169423835$ |
$1$ |
|
$42$ |
$271872$ |
$-0.095006$ |
$41854210048/501029$ |
$[0, 1, 1, -72, 210]$ |
\(y^2+y=x^3+x^2-72x+210\) |
501121.a1 |
- |
501121.a |
- |
$1$ |
$1$ |
\( 501121 \) |
\( 501121 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.822916517$ |
$1$ |
|
$6$ |
$102788$ |
$-0.169841$ |
$5026574097/501121$ |
$[1, -1, 1, -36, -66]$ |
\(y^2+xy+y=x^3-x^2-36x-66\) |
501139.a1 |
- |
501139.a |
- |
$1$ |
$1$ |
\( 501139 \) |
\( 501139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.482767682$ |
$1$ |
|
$0$ |
$157954$ |
$-0.018553$ |
$252555814161/501139$ |
$[1, -1, 1, -132, -548]$ |
\(y^2+xy+y=x^3-x^2-132x-548\) |
501139.b1 |
- |
501139.b |
- |
$1$ |
$1$ |
\( 501139 \) |
\( -501139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$470488$ |
$0.655404$ |
$-40125329153118208/501139$ |
$[0, -1, 1, -7132, 234221]$ |
\(y^2+y=x^3-x^2-7132x+234221\) |
501317.a1 |
- |
501317.a |
- |
$1$ |
$1$ |
\( 501317 \) |
\( 501317 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$34690$ |
$-0.136410$ |
$13824000000/501317$ |
$[0, 0, 1, -50, -132]$ |
\(y^2+y=x^3-50x-132\) |
501341.a1 |
- |
501341.a |
- |
$1$ |
$1$ |
\( 501341 \) |
\( -501341 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.792395909$ |
$1$ |
|
$0$ |
$38242$ |
$-0.223833$ |
$109902239/501341$ |
$[1, 0, 0, 10, -31]$ |
\(y^2+xy=x^3+10x-31\) |
501367.a1 |
- |
501367.a |
- |
$1$ |
$1$ |
\( 501367 \) |
\( -501367 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8.254293117$ |
$1$ |
|
$0$ |
$56132$ |
$-0.222032$ |
$-95443993/501367$ |
$[1, 1, 0, -9, 32]$ |
\(y^2+xy=x^3+x^2-9x+32\) |
501451.a1 |
- |
501451.a |
- |
$1$ |
$1$ |
\( 501451 \) |
\( -501451 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$58968$ |
$-0.218221$ |
$642735647/501451$ |
$[1, 1, 1, 18, -10]$ |
\(y^2+xy+y=x^3+x^2+18x-10\) |
501563.a1 |
- |
501563.a |
- |
$1$ |
$1$ |
\( 501563 \) |
\( -501563 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$6.252577989$ |
$1$ |
|
$4$ |
$65852$ |
$-0.226033$ |
$20123648/501563$ |
$[0, 1, 1, 6, -32]$ |
\(y^2+y=x^3+x^2+6x-32\) |
502237.a1 |
- |
502237.a |
- |
$1$ |
$1$ |
\( 502237 \) |
\( 502237 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$4.391473878$ |
$1$ |
|
$4$ |
$39360$ |
$-0.187938$ |
$2703045457/502237$ |
$[1, 0, 0, -29, -52]$ |
\(y^2+xy=x^3-29x-52\) |
502237.b1 |
- |
502237.b |
- |
$1$ |
$1$ |
\( 502237 \) |
\( 502237 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.505377253$ |
$1$ |
|
$0$ |
$139586$ |
$-0.126093$ |
$18399744000/502237$ |
$[0, 0, 1, -55, 153]$ |
\(y^2+y=x^3-55x+153\) |
502237.c1 |
- |
502237.c |
- |
$1$ |
$1$ |
\( 502237 \) |
\( 502237 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$73438$ |
$-0.202041$ |
$1593413632/502237$ |
$[0, -1, 1, -24, 39]$ |
\(y^2+y=x^3-x^2-24x+39\) |
502507.a1 |
- |
502507.a |
- |
$1$ |
$1$ |
\( 502507 \) |
\( -502507 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2.767574032$ |
$1$ |
|
$0$ |
$175664$ |
$-0.118435$ |
$-21952000000/502507$ |
$[0, -1, 1, -58, 194]$ |
\(y^2+y=x^3-x^2-58x+194\) |
502543.a1 |
- |
502543.a |
- |
$1$ |
$1$ |
\( 502543 \) |
\( -502543 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$4.048298968$ |
$1$ |
|
$2$ |
$38912$ |
$-0.212060$ |
$-426957777/502543$ |
$[1, -1, 1, -16, -38]$ |
\(y^2+xy+y=x^3-x^2-16x-38\) |
502543.b1 |
- |
502543.b |
- |
$1$ |
$1$ |
\( 502543 \) |
\( -502543 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2.987990163$ |
$1$ |
|
$2$ |
$70872$ |
$-0.169654$ |
$-4354703137/502543$ |
$[1, 1, 1, -34, -98]$ |
\(y^2+xy+y=x^3+x^2-34x-98\) |
502819.a1 |
- |
502819.a |
- |
$1$ |
$1$ |
\( 502819 \) |
\( -502819 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$6.093750191$ |
$1$ |
|
$0$ |
$84090$ |
$-0.226544$ |
$5451776/502819$ |
$[0, 1, 1, 4, -33]$ |
\(y^2+y=x^3+x^2+4x-33\) |
502829.a1 |
- |
502829.a |
- |
$1$ |
$1$ |
\( 502829 \) |
\( 502829 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2.499447655$ |
$1$ |
|
$2$ |
$40036$ |
$-0.179488$ |
$3623878656/502829$ |
$[0, 0, 1, -32, -61]$ |
\(y^2+y=x^3-32x-61\) |
503621.a1 |
- |
503621.a |
- |
$1$ |
$1$ |
\( 503621 \) |
\( -503621 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$15.33182773$ |
$1$ |
|
$0$ |
$96750$ |
$-0.222951$ |
$139798359/503621$ |
$[1, -1, 0, 11, -34]$ |
\(y^2+xy=x^3-x^2+11x-34\) |
503803.a1 |
- |
503803.a |
- |
$1$ |
$1$ |
\( 503803 \) |
\( -503803 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.246145804$ |
$1$ |
|
$6$ |
$51292$ |
$-0.217067$ |
$758550528/503803$ |
$[0, 0, 1, 19, 12]$ |
\(y^2+y=x^3+19x+12\) |
503857.a1 |
- |
503857.a |
- |
$1$ |
$1$ |
\( 503857 \) |
\( -503857 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$40512$ |
$-0.226330$ |
$6128487/503857$ |
$[1, -1, 0, 4, -35]$ |
\(y^2+xy=x^3-x^2+4x-35\) |
503963.a1 |
- |
503963.a |
- |
$1$ |
$1$ |
\( 503963 \) |
\( -503963 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$126428$ |
$-0.018213$ |
$-252555814161/503963$ |
$[1, -1, 1, -132, -550]$ |
\(y^2+xy+y=x^3-x^2-132x-550\) |
504149.a1 |
- |
504149.a |
- |
$1$ |
$1$ |
\( 504149 \) |
\( -504149 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2.095780300$ |
$1$ |
|
$2$ |
$40534$ |
$-0.217029$ |
$756058031/504149$ |
$[1, 0, 0, 19, 14]$ |
\(y^2+xy=x^3+19x+14\) |
504197.a1 |
- |
504197.a |
- |
$1$ |
$1$ |
\( 504197 \) |
\( 504197 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1.841983747$ |
$1$ |
|
$2$ |
$53998$ |
$-0.215959$ |
$884736000/504197$ |
$[0, 0, 1, -20, 4]$ |
\(y^2+y=x^3-20x+4\) |
504299.a1 |
- |
504299.a |
- |
$1$ |
$1$ |
\( 504299 \) |
\( -504299 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$93911$ |
$-0.225878$ |
$-8998912/504299$ |
$[0, 1, 1, -4, -36]$ |
\(y^2+y=x^3+x^2-4x-36\) |
504323.a1 |
- |
504323.a |
- |
$1$ |
$1$ |
\( 504323 \) |
\( -504323 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$4.578621953$ |
$1$ |
|
$0$ |
$45192$ |
$-0.226744$ |
$512000/504323$ |
$[0, -1, 1, 2, -35]$ |
\(y^2+y=x^3-x^2+2x-35\) |
504521.a1 |
- |
504521.a |
- |
$1$ |
$1$ |
\( 504521 \) |
\( 504521 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$242216$ |
$0.453624$ |
$1545165254811529/504521$ |
$[1, 0, 1, -2409, -45697]$ |
\(y^2+xy+y=x^3-2409x-45697\) |
504521.b1 |
- |
504521.b |
- |
$1$ |
$1$ |
\( 504521 \) |
\( -504521 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8.301270702$ |
$1$ |
|
$4$ |
$99904$ |
$-0.225749$ |
$-10218313/504521$ |
$[1, 0, 1, -5, -35]$ |
\(y^2+xy+y=x^3-5x-35\) |
505033.a1 |
- |
505033.a |
- |
$1$ |
$1$ |
\( 505033 \) |
\( -505033 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2.419287806$ |
$1$ |
|
$2$ |
$67018$ |
$-0.226284$ |
$-3048625/505033$ |
$[1, 0, 0, -3, 34]$ |
\(y^2+xy=x^3-3x+34\) |
505061.a1 |
- |
505061.a |
- |
$1$ |
$1$ |
\( 505061 \) |
\( 505061 \) |
$3$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.583878817$ |
$1$ |
|
$14$ |
$82896$ |
$0.105460$ |
$3231289442304/505061$ |
$[0, 0, 1, -308, 2080]$ |
\(y^2+y=x^3-308x+2080\) |
505061.b1 |
- |
505061.b |
- |
$1$ |
$1$ |
\( 505061 \) |
\( -505061 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.195573343$ |
$1$ |
|
$4$ |
$113076$ |
$0.067280$ |
$-1519685060473/505061$ |
$[1, 0, 1, -240, 1407]$ |
\(y^2+xy+y=x^3-240x+1407\) |
505111.a1 |
- |
505111.a |
- |
$1$ |
$1$ |
\( 505111 \) |
\( -505111 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$110532$ |
$-0.064877$ |
$-86175179713/505111$ |
$[1, 1, 1, -92, -380]$ |
\(y^2+xy+y=x^3+x^2-92x-380\) |
505139.a1 |
- |
505139.a |
- |
$1$ |
$1$ |
\( 505139 \) |
\( -505139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$63.45393117$ |
$1$ |
|
$0$ |
$248574$ |
$0.509319$ |
$-3853942412898304/505139$ |
$[0, 1, 1, -3266, -72941]$ |
\(y^2+y=x^3+x^2-3266x-72941\) |
505187.a1 |
- |
505187.a |
- |
$1$ |
$1$ |
\( 505187 \) |
\( -505187 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$36.69619193$ |
$1$ |
|
$0$ |
$143862$ |
$-0.204832$ |
$-758550528/505187$ |
$[0, 0, 1, -19, -47]$ |
\(y^2+y=x^3-19x-47\) |
505283.a1 |
- |
505283.a |
- |
$1$ |
$1$ |
\( 505283 \) |
\( -505283 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$216238$ |
$0.593425$ |
$-14965684732064737/505283$ |
$[1, 1, 1, -5134, -143730]$ |
\(y^2+xy+y=x^3+x^2-5134x-143730\) |
505663.a1 |
- |
505663.a |
- |
$1$ |
$1$ |
\( 505663 \) |
\( -505663 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.890557645$ |
$1$ |
|
$2$ |
$57504$ |
$-0.218320$ |
$541343375/505663$ |
$[1, 1, 1, 17, 28]$ |
\(y^2+xy+y=x^3+x^2+17x+28\) |
505691.a1 |
- |
505691.a |
- |
$1$ |
$1$ |
\( 505691 \) |
\( -505691 \) |
$3$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.656533502$ |
$1$ |
|
$14$ |
$133008$ |
$0.121001$ |
$-4359504941056/505691$ |
$[0, -1, 1, -340, 2530]$ |
\(y^2+y=x^3-x^2-340x+2530\) |
505691.b1 |
- |
505691.b |
- |
$1$ |
$1$ |
\( 505691 \) |
\( -505691 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$11.55256907$ |
$1$ |
|
$4$ |
$82112$ |
$0.027104$ |
$-666940371553/505691$ |
$[1, 0, 0, -182, -961]$ |
\(y^2+xy=x^3-182x-961\) |
505709.a1 |
- |
505709.a |
- |
$1$ |
$1$ |
\( 505709 \) |
\( 505709 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$425398$ |
$0.618357$ |
$22258232254222336/505709$ |
$[0, -1, 1, -5860, 174629]$ |
\(y^2+y=x^3-x^2-5860x+174629\) |
505763.a1 |
- |
505763.a |
- |
$1$ |
$1$ |
\( 505763 \) |
\( -505763 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$125475$ |
$0.376911$ |
$-427434241687552/505763$ |
$[0, -1, 1, -1569, -23406]$ |
\(y^2+y=x^3-x^2-1569x-23406\) |
505763.b1 |
- |
505763.b |
- |
$1$ |
$1$ |
\( 505763 \) |
\( -505763 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$44209$ |
$-0.204022$ |
$-799178752/505763$ |
$[0, 1, 1, -19, -54]$ |
\(y^2+y=x^3+x^2-19x-54\) |
505819.a1 |
- |
505819.a |
- |
$1$ |
$1$ |
\( 505819 \) |
\( -505819 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$36003$ |
$-0.219025$ |
$452984832/505819$ |
$[0, 0, 1, 16, -24]$ |
\(y^2+y=x^3+16x-24\) |
506251.a1 |
- |
506251.a |
- |
$1$ |
$1$ |
\( 506251 \) |
\( -506251 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.201803163$ |
$1$ |
|
$6$ |
$69600$ |
$-0.226352$ |
$-884736/506251$ |
$[0, 0, 1, -2, 34]$ |
\(y^2+y=x^3-2x+34\) |
506251.b1 |
- |
506251.b |
- |
$1$ |
$1$ |
\( 506251 \) |
\( -506251 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$63947$ |
$-0.221320$ |
$224755712/506251$ |
$[0, -1, 1, 13, 25]$ |
\(y^2+y=x^3-x^2+13x+25\) |
506339.a1 |
- |
506339.a |
- |
$1$ |
$1$ |
\( 506339 \) |
\( 506339 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$4$ |
$2$ |
$0$ |
$213936$ |
$0.466834$ |
$1919244689134417/506339$ |
$[1, 1, 1, -2589, -51784]$ |
\(y^2+xy+y=x^3+x^2-2589x-51784\) |
506459.a1 |
- |
506459.a |
- |
$1$ |
$1$ |
\( 506459 \) |
\( -506459 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$79407$ |
$0.025026$ |
$-637832691712/506459$ |
$[0, 1, 1, -179, 865]$ |
\(y^2+y=x^3+x^2-179x+865\) |
506573.a1 |
- |
506573.a |
- |
$1$ |
$1$ |
\( 506573 \) |
\( -506573 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.214214958$ |
$1$ |
|
$0$ |
$44536$ |
$-0.216265$ |
$817400375/506573$ |
$[1, 1, 0, 20, 17]$ |
\(y^2+xy=x^3+x^2+20x+17\) |