Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
100002.a1 |
100002a2 |
100002.a |
100002a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 2381 \) |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 2381^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$2.111059379$ |
$1$ |
|
$2$ |
$150272$ |
$0.561893$ |
$9978645018889/5714514288$ |
$[1, 1, 0, -448, -560]$ |
\(y^2+xy=x^3+x^2-448x-560\) |
100002.a2 |
100002a1 |
100002.a |
100002a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7 \cdot 2381 \) |
\( - 2^{8} \cdot 3 \cdot 7^{2} \cdot 2381 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$4.222118759$ |
$1$ |
|
$3$ |
$75136$ |
$0.215320$ |
$153216258551/89601792$ |
$[1, 1, 0, 112, 0]$ |
\(y^2+xy=x^3+x^2+112x\) |
100005.a1 |
100005a1 |
100005.a |
100005a |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 59 \cdot 113 \) |
\( - 3^{6} \cdot 5^{2} \cdot 59 \cdot 113 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.621984153$ |
$1$ |
|
$12$ |
$53088$ |
$0.333751$ |
$-4594165018624/121506075$ |
$[0, -1, 1, -346, 2652]$ |
\(y^2+y=x^3-x^2-346x+2652\) |
100005.b1 |
100005b1 |
100005.b |
100005b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 59 \cdot 113 \) |
\( 3^{3} \cdot 5^{5} \cdot 59 \cdot 113 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$58320$ |
$0.592692$ |
$497998408351744/562528125$ |
$[0, 1, 1, -1651, -26354]$ |
\(y^2+y=x^3+x^2-1651x-26354\) |
100005.c1 |
100005d1 |
100005.c |
100005d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 59 \cdot 113 \) |
\( - 3^{4} \cdot 5^{7} \cdot 59^{2} \cdot 113 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.618226316$ |
$1$ |
|
$2$ |
$180096$ |
$1.059931$ |
$-160643187047881/2489186953125$ |
$[1, 0, 1, -1133, -77407]$ |
\(y^2+xy+y=x^3-1133x-77407\) |
100005.d1 |
100005c1 |
100005.d |
100005c |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 59 \cdot 113 \) |
\( 3^{3} \cdot 5 \cdot 59^{5} \cdot 113^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1539840$ |
$1.830872$ |
$1717659606564845572096/1232397230480685$ |
$[0, 1, 1, -249500, 47855441]$ |
\(y^2+y=x^3+x^2-249500x+47855441\) |
100007.a1 |
100007a1 |
100007.a |
100007a |
$1$ |
$1$ |
\( 97 \cdot 1031 \) |
\( - 97 \cdot 1031 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$34592$ |
$-0.088606$ |
$-196832673513/100007$ |
$[1, -1, 0, -121, 544]$ |
\(y^2+xy=x^3-x^2-121x+544\) |
100008.a1 |
100008b1 |
100008.a |
100008b |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{3} \cdot 463 \) |
\( - 2^{10} \cdot 3^{9} \cdot 463 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.204593392$ |
$1$ |
|
$4$ |
$65088$ |
$0.610351$ |
$-530604/463$ |
$[0, 0, 0, -459, -5994]$ |
\(y^2=x^3-459x-5994\) |
100008.b1 |
100008a1 |
100008.b |
100008a |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{3} \cdot 463 \) |
\( - 2^{10} \cdot 3^{3} \cdot 463 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$21696$ |
$0.061044$ |
$-530604/463$ |
$[0, 0, 0, -51, 222]$ |
\(y^2=x^3-51x+222\) |
100010.a1 |
100010a1 |
100010.a |
100010a |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( - 2^{15} \cdot 5 \cdot 73 \cdot 137 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.415824783$ |
$1$ |
|
$2$ |
$53760$ |
$0.450438$ |
$347577210791/1638563840$ |
$[1, 1, 0, 147, -1763]$ |
\(y^2+xy=x^3+x^2+147x-1763\) |
100010.b1 |
100010b1 |
100010.b |
100010b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( - 2^{9} \cdot 5^{3} \cdot 73 \cdot 137 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$3.611706345$ |
$1$ |
|
$0$ |
$100224$ |
$0.891811$ |
$-135803877416902729/640064000$ |
$[1, 0, 1, -10709, 425632]$ |
\(y^2+xy+y=x^3-10709x+425632\) |
100010.c1 |
100010c1 |
100010.c |
100010c |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{8} \cdot 5^{2} \cdot 73 \cdot 137 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.22 |
2B |
$7.222256794$ |
$1$ |
|
$1$ |
$102400$ |
$0.707813$ |
$15581727508423609/64006400$ |
$[1, 1, 0, -5203, -146643]$ |
\(y^2+xy=x^3+x^2-5203x-146643\) |
100010.c2 |
100010c2 |
100010.c |
100010c |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( - 2^{4} \cdot 5^{4} \cdot 73^{2} \cdot 137^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.37 |
2B |
$3.611128397$ |
$1$ |
|
$2$ |
$204800$ |
$1.054386$ |
$-14874049811900089/1000200010000$ |
$[1, 1, 0, -5123, -151267]$ |
\(y^2+xy=x^3+x^2-5123x-151267\) |
100010.d1 |
100010d1 |
100010.d |
100010d |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( - 2 \cdot 5^{4} \cdot 73 \cdot 137 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$2.250621033$ |
$1$ |
|
$2$ |
$27136$ |
$0.040694$ |
$1685159/12501250$ |
$[1, 1, 0, 3, -169]$ |
\(y^2+xy=x^3+x^2+3x-169\) |
100010.e1 |
100010k1 |
100010.e |
100010k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( - 2^{6} \cdot 5 \cdot 73^{2} \cdot 137 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.348369193$ |
$1$ |
|
$4$ |
$51264$ |
$0.439038$ |
$-33265084589281/233623360$ |
$[1, 0, 0, -670, 6660]$ |
\(y^2+xy=x^3-670x+6660\) |
100010.f1 |
100010e1 |
100010.f |
100010e |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{46} \cdot 5^{14} \cdot 73^{2} \cdot 137 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$2.992483690$ |
$1$ |
|
$3$ |
$222813696$ |
$4.607399$ |
$564345804012377540082892046274202641/313563965869260800000000000000$ |
$[1, -1, 1, -17216328052, -869056815249449]$ |
\(y^2+xy+y=x^3-x^2-17216328052x-869056815249449\) |
100010.f2 |
100010e2 |
100010.f |
100010e |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( - 2^{23} \cdot 5^{28} \cdot 73 \cdot 137^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$5.984967381$ |
$1$ |
|
$2$ |
$445627392$ |
$4.953972$ |
$-313621648911503266976083898753158161/428167812500000000000000000000000$ |
$[1, -1, 1, -14154486132, -1187958673848361]$ |
\(y^2+xy+y=x^3-x^2-14154486132x-1187958673848361\) |
100010.g1 |
100010i1 |
100010.g |
100010i |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{11} \cdot 5^{7} \cdot 73 \cdot 137^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$9624384$ |
$3.085155$ |
$153288006309736388746325476561/4114576216480000000$ |
$[1, 0, 0, -111496565, -453157570783]$ |
\(y^2+xy=x^3-111496565x-453157570783\) |
100010.h1 |
100010j1 |
100010.h |
100010j |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{2} \cdot 5 \cdot 73 \cdot 137 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$12384$ |
$-0.291506$ |
$374805361/200020$ |
$[1, 0, 0, -15, 5]$ |
\(y^2+xy=x^3-15x+5\) |
100010.i1 |
100010h2 |
100010.i |
100010h |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{3} \cdot 5^{2} \cdot 73^{2} \cdot 137^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.6 |
2B |
$1$ |
$1$ |
|
$0$ |
$108288$ |
$0.717183$ |
$229232164503601/20004000200$ |
$[1, 1, 1, -1275, 15617]$ |
\(y^2+xy+y=x^3+x^2-1275x+15617\) |
100010.i2 |
100010h1 |
100010.i |
100010h |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{6} \cdot 5^{4} \cdot 73 \cdot 137 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$54144$ |
$0.370609$ |
$2300490759601/400040000$ |
$[1, 1, 1, -275, -1583]$ |
\(y^2+xy+y=x^3+x^2-275x-1583\) |
100010.j1 |
100010f2 |
100010.j |
100010f |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2 \cdot 5^{4} \cdot 73 \cdot 137^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$8.456220534$ |
$1$ |
|
$0$ |
$90112$ |
$0.554677$ |
$67922306042401/1712671250$ |
$[1, 1, 1, -850, -9683]$ |
\(y^2+xy+y=x^3+x^2-850x-9683\) |
100010.j2 |
100010f1 |
100010.j |
100010f |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{2} \cdot 5^{2} \cdot 73^{2} \cdot 137 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$4.228110267$ |
$1$ |
|
$1$ |
$45056$ |
$0.208103$ |
$191202526081/73007300$ |
$[1, 1, 1, -120, 245]$ |
\(y^2+xy+y=x^3+x^2-120x+245\) |
100010.k1 |
100010g1 |
100010.k |
100010g |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 73 \cdot 137 \) |
\( 2^{17} \cdot 5 \cdot 73 \cdot 137^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.793961327$ |
$1$ |
|
$0$ |
$980832$ |
$1.386784$ |
$27099508997725670241/897932984320$ |
$[1, -1, 1, -62577, 6040609]$ |
\(y^2+xy+y=x^3-x^2-62577x+6040609\) |
100011.a1 |
100011e1 |
100011.a |
100011e |
$1$ |
$1$ |
\( 3 \cdot 17 \cdot 37 \cdot 53 \) |
\( - 3^{7} \cdot 17 \cdot 37^{3} \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.215488720$ |
$1$ |
|
$6$ |
$121968$ |
$0.798815$ |
$135353378115584/99811078011$ |
$[0, 1, 1, 1070, 7408]$ |
\(y^2+y=x^3+x^2+1070x+7408\) |
100011.b1 |
100011b1 |
100011.b |
100011b |
$1$ |
$1$ |
\( 3 \cdot 17 \cdot 37 \cdot 53 \) |
\( - 3^{5} \cdot 17^{3} \cdot 37 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1.215119325$ |
$1$ |
|
$4$ |
$41040$ |
$0.476951$ |
$6549699311/2341157499$ |
$[1, 1, 1, 39, -2310]$ |
\(y^2+xy+y=x^3+x^2+39x-2310\) |
100011.c1 |
100011a1 |
100011.c |
100011a |
$1$ |
$1$ |
\( 3 \cdot 17 \cdot 37 \cdot 53 \) |
\( - 3^{17} \cdot 17 \cdot 37 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$5.641553246$ |
$1$ |
|
$2$ |
$766224$ |
$1.769850$ |
$4969107733387776623/12093154029532179$ |
$[1, 1, 1, 35551, 4633994]$ |
\(y^2+xy+y=x^3+x^2+35551x+4633994\) |
100011.d1 |
100011d1 |
100011.d |
100011d |
$2$ |
$2$ |
\( 3 \cdot 17 \cdot 37 \cdot 53 \) |
\( 3^{4} \cdot 17 \cdot 37 \cdot 53 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.3 |
2B |
$2.710379409$ |
$1$ |
|
$3$ |
$45312$ |
$0.284289$ |
$36571225840057/2700297$ |
$[1, 0, 1, -692, 6941]$ |
\(y^2+xy+y=x^3-692x+6941\) |
100011.d2 |
100011d2 |
100011.d |
100011d |
$2$ |
$2$ |
\( 3 \cdot 17 \cdot 37 \cdot 53 \) |
\( - 3^{2} \cdot 17^{2} \cdot 37^{2} \cdot 53^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.5 |
2B |
$1.355189704$ |
$1$ |
|
$4$ |
$90624$ |
$0.630863$ |
$-29886240312937/10002200121$ |
$[1, 0, 1, -647, 7895]$ |
\(y^2+xy+y=x^3-647x+7895\) |
100011.e1 |
100011c1 |
100011.e |
100011c |
$1$ |
$1$ |
\( 3 \cdot 17 \cdot 37 \cdot 53 \) |
\( - 3^{7} \cdot 17^{3} \cdot 37^{8} \cdot 53^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$4.521742922$ |
$1$ |
|
$0$ |
$10765440$ |
$3.104042$ |
$81228381874428716689043456/106013477073021185065059$ |
$[0, -1, 1, 9022524, -11690123677]$ |
\(y^2+y=x^3-x^2+9022524x-11690123677\) |
100014.a1 |
100014a1 |
100014.a |
100014a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( - 2^{32} \cdot 3^{2} \cdot 79 \cdot 211 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$520704$ |
$1.530100$ |
$916763542913931623/644335288713216$ |
$[1, 1, 0, 20239, 521685]$ |
\(y^2+xy=x^3+x^2+20239x+521685\) |
100014.b1 |
100014b1 |
100014.b |
100014b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( 2^{5} \cdot 3 \cdot 79 \cdot 211 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.771377877$ |
$1$ |
|
$10$ |
$25760$ |
$0.002317$ |
$135559106353/1600224$ |
$[1, 1, 1, -107, 377]$ |
\(y^2+xy+y=x^3+x^2-107x+377\) |
100014.c1 |
100014c2 |
100014.c |
100014c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( 2^{2} \cdot 3^{6} \cdot 79 \cdot 211^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$4.756238768$ |
$1$ |
|
$0$ |
$73728$ |
$0.721408$ |
$649304417969857/10256035644$ |
$[1, 1, 1, -1804, -29839]$ |
\(y^2+xy+y=x^3+x^2-1804x-29839\) |
100014.c2 |
100014c1 |
100014.c |
100014c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( 2^{4} \cdot 3^{3} \cdot 79^{2} \cdot 211 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$2.378119384$ |
$1$ |
|
$3$ |
$36864$ |
$0.374834$ |
$1243337227777/568879632$ |
$[1, 1, 1, -224, 497]$ |
\(y^2+xy+y=x^3+x^2-224x+497\) |
100014.d1 |
100014d1 |
100014.d |
100014d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( - 2^{4} \cdot 3^{6} \cdot 79 \cdot 211 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.459514252$ |
$1$ |
|
$6$ |
$49728$ |
$0.319060$ |
$-1243337227777/194427216$ |
$[1, 1, 1, -224, 1361]$ |
\(y^2+xy+y=x^3+x^2-224x+1361\) |
100014.e1 |
100014f2 |
100014.e |
100014f |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( 2 \cdot 3^{5} \cdot 79^{3} \cdot 211^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.771181858$ |
$1$ |
|
$0$ |
$1213920$ |
$1.721407$ |
$72918170522696196433/2250945132306174$ |
$[1, 0, 0, -87037, -9623389]$ |
\(y^2+xy=x^3-87037x-9623389\) |
100014.e2 |
100014f1 |
100014.e |
100014f |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( 2^{3} \cdot 3^{15} \cdot 79 \cdot 211 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2.313545576$ |
$1$ |
|
$6$ |
$404640$ |
$1.172100$ |
$177444640175483953/1913455446264$ |
$[1, 0, 0, -11707, 482009]$ |
\(y^2+xy=x^3-11707x+482009\) |
100014.f1 |
100014e1 |
100014.f |
100014e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 79 \cdot 211 \) |
\( 2^{13} \cdot 3^{7} \cdot 79 \cdot 211 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.272567573$ |
$1$ |
|
$22$ |
$148512$ |
$0.911431$ |
$1171205436932929/298640203776$ |
$[1, 0, 0, -2196, -29808]$ |
\(y^2+xy=x^3-2196x-29808\) |
100015.a1 |
100015a1 |
100015.a |
100015a |
$1$ |
$1$ |
\( 5 \cdot 83 \cdot 241 \) |
\( - 5^{2} \cdot 83 \cdot 241 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1.157324914$ |
$1$ |
|
$0$ |
$34944$ |
$0.537610$ |
$-6122862569488384/500075$ |
$[0, 1, 1, -3811, 89295]$ |
\(y^2+y=x^3+x^2-3811x+89295\) |
100016.a1 |
100016a1 |
100016.a |
100016a |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( 2^{8} \cdot 7 \cdot 19^{2} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.249172616$ |
$1$ |
|
$3$ |
$19712$ |
$0.130702$ |
$259108432/118769$ |
$[0, 1, 0, -84, -164]$ |
\(y^2=x^3+x^2-84x-164\) |
100016.a2 |
100016a2 |
100016.a |
100016a |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{10} \cdot 7^{2} \cdot 19 \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.124586308$ |
$1$ |
|
$5$ |
$39424$ |
$0.477276$ |
$2791456412/2056579$ |
$[0, 1, 0, 296, -924]$ |
\(y^2=x^3+x^2+296x-924\) |
100016.b1 |
100016e2 |
100016.b |
100016e |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( 2^{8} \cdot 7 \cdot 19^{2} \cdot 47^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$1168128$ |
$2.105553$ |
$25156640481643577374288/262360721$ |
$[0, 1, 0, -3876052, -2938485540]$ |
\(y^2=x^3+x^2-3876052x-2938485540\) |
100016.b2 |
100016e1 |
100016.b |
100016e |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{4} \cdot 7^{2} \cdot 19 \cdot 47^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$584064$ |
$1.758978$ |
$-98260901558505084928/10035449471299$ |
$[0, 1, 0, -242247, -45976760]$ |
\(y^2=x^3+x^2-242247x-45976760\) |
100016.c1 |
100016o1 |
100016.c |
100016o |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{16} \cdot 7^{7} \cdot 19^{4} \cdot 47 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1462272$ |
$2.308685$ |
$-143563142482697477233/80708360371856$ |
$[0, -1, 0, -1745392, -887388736]$ |
\(y^2=x^3-x^2-1745392x-887388736\) |
100016.d1 |
100016n1 |
100016.d |
100016n |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{16} \cdot 7 \cdot 19 \cdot 47 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.745134110$ |
$1$ |
|
$4$ |
$36864$ |
$0.347775$ |
$-95443993/100016$ |
$[0, -1, 0, -152, 1264]$ |
\(y^2=x^3-x^2-152x+1264\) |
100016.e1 |
100016h1 |
100016.e |
100016h |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{4} \cdot 7^{7} \cdot 19 \cdot 47 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.765042535$ |
$1$ |
|
$4$ |
$43008$ |
$0.613301$ |
$62800480256/735423899$ |
$[0, -1, 0, 209, -5158]$ |
\(y^2=x^3-x^2+209x-5158\) |
100016.f1 |
100016f1 |
100016.f |
100016f |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.646800567$ |
$1$ |
|
$2$ |
$7680$ |
$-0.248955$ |
$-304900096/6251$ |
$[0, -1, 0, -35, 94]$ |
\(y^2=x^3-x^2-35x+94\) |
100016.g1 |
100016m1 |
100016.g |
100016m |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( 2^{14} \cdot 7^{3} \cdot 19^{2} \cdot 47 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3.138258121$ |
$1$ |
|
$3$ |
$80640$ |
$0.944548$ |
$3733252610697/23278724$ |
$[0, 0, 0, -5171, -142350]$ |
\(y^2=x^3-5171x-142350\) |
100016.g2 |
100016m2 |
100016.g |
100016m |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( - 2^{13} \cdot 7^{6} \cdot 19 \cdot 47^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6.276516243$ |
$1$ |
|
$1$ |
$161280$ |
$1.291121$ |
$-261284780457/9875692358$ |
$[0, 0, 0, -2131, -308334]$ |
\(y^2=x^3-2131x-308334\) |
100016.h1 |
100016p4 |
100016.h |
100016p |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) |
\( 2^{13} \cdot 7^{4} \cdot 19^{2} \cdot 47^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.49 |
2B |
$1.492748857$ |
$1$ |
|
$11$ |
$454656$ |
$1.876106$ |
$25172562615580017/8459034366482$ |
$[0, 0, 0, -97691, 7610314]$ |
\(y^2=x^3-97691x+7610314\) |