Learn more

Refine search


Results (1-50 of 2407309 matches)

Next   There are too many results (2407309) to download.
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
100002.a1 100002.a \( 2 \cdot 3 \cdot 7 \cdot 2381 \) $1$ $\Z/2\Z$ $2.111059379$ $[1, 1, 0, -448, -560]$ \(y^2+xy=x^3+x^2-448x-560\)
100002.a2 100002.a \( 2 \cdot 3 \cdot 7 \cdot 2381 \) $1$ $\Z/2\Z$ $4.222118759$ $[1, 1, 0, 112, 0]$ \(y^2+xy=x^3+x^2+112x\)
100005.a1 100005.a \( 3 \cdot 5 \cdot 59 \cdot 113 \) $2$ $\mathsf{trivial}$ $0.621984153$ $[0, -1, 1, -346, 2652]$ \(y^2+y=x^3-x^2-346x+2652\)
100005.b1 100005.b \( 3 \cdot 5 \cdot 59 \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -1651, -26354]$ \(y^2+y=x^3+x^2-1651x-26354\)
100005.c1 100005.c \( 3 \cdot 5 \cdot 59 \cdot 113 \) $1$ $\mathsf{trivial}$ $0.618226316$ $[1, 0, 1, -1133, -77407]$ \(y^2+xy+y=x^3-1133x-77407\)
100005.d1 100005.d \( 3 \cdot 5 \cdot 59 \cdot 113 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -249500, 47855441]$ \(y^2+y=x^3+x^2-249500x+47855441\)
100007.a1 100007.a \( 97 \cdot 1031 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -121, 544]$ \(y^2+xy=x^3-x^2-121x+544\)
100008.a1 100008.a \( 2^{3} \cdot 3^{3} \cdot 463 \) $1$ $\mathsf{trivial}$ $1.204593392$ $[0, 0, 0, -459, -5994]$ \(y^2=x^3-459x-5994\)
100008.b1 100008.b \( 2^{3} \cdot 3^{3} \cdot 463 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -51, 222]$ \(y^2=x^3-51x+222\)
100010.a1 100010.a \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\mathsf{trivial}$ $5.415824783$ $[1, 1, 0, 147, -1763]$ \(y^2+xy=x^3+x^2+147x-1763\)
100010.b1 100010.b \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\mathsf{trivial}$ $3.611706345$ $[1, 0, 1, -10709, 425632]$ \(y^2+xy+y=x^3-10709x+425632\)
100010.c1 100010.c \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ $7.222256794$ $[1, 1, 0, -5203, -146643]$ \(y^2+xy=x^3+x^2-5203x-146643\)
100010.c2 100010.c \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ $3.611128397$ $[1, 1, 0, -5123, -151267]$ \(y^2+xy=x^3+x^2-5123x-151267\)
100010.d1 100010.d \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\mathsf{trivial}$ $2.250621033$ $[1, 1, 0, 3, -169]$ \(y^2+xy=x^3+x^2+3x-169\)
100010.e1 100010.e \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\mathsf{trivial}$ $0.348369193$ $[1, 0, 0, -670, 6660]$ \(y^2+xy=x^3-670x+6660\)
100010.f1 100010.f \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ $2.992483690$ $[1, -1, 1, -17216328052, -869056815249449]$ \(y^2+xy+y=x^3-x^2-17216328052x-869056815249449\)
100010.f2 100010.f \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ $5.984967381$ $[1, -1, 1, -14154486132, -1187958673848361]$ \(y^2+xy+y=x^3-x^2-14154486132x-1187958673848361\)
100010.g1 100010.g \( 2 \cdot 5 \cdot 73 \cdot 137 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -111496565, -453157570783]$ \(y^2+xy=x^3-111496565x-453157570783\)
100010.h1 100010.h \( 2 \cdot 5 \cdot 73 \cdot 137 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -15, 5]$ \(y^2+xy=x^3-15x+5\)
100010.i1 100010.i \( 2 \cdot 5 \cdot 73 \cdot 137 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1275, 15617]$ \(y^2+xy+y=x^3+x^2-1275x+15617\)
100010.i2 100010.i \( 2 \cdot 5 \cdot 73 \cdot 137 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -275, -1583]$ \(y^2+xy+y=x^3+x^2-275x-1583\)
100010.j1 100010.j \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ $8.456220534$ $[1, 1, 1, -850, -9683]$ \(y^2+xy+y=x^3+x^2-850x-9683\)
100010.j2 100010.j \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\Z/2\Z$ $4.228110267$ $[1, 1, 1, -120, 245]$ \(y^2+xy+y=x^3+x^2-120x+245\)
100010.k1 100010.k \( 2 \cdot 5 \cdot 73 \cdot 137 \) $1$ $\mathsf{trivial}$ $0.793961327$ $[1, -1, 1, -62577, 6040609]$ \(y^2+xy+y=x^3-x^2-62577x+6040609\)
100011.a1 100011.a \( 3 \cdot 17 \cdot 37 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.215488720$ $[0, 1, 1, 1070, 7408]$ \(y^2+y=x^3+x^2+1070x+7408\)
100011.b1 100011.b \( 3 \cdot 17 \cdot 37 \cdot 53 \) $1$ $\mathsf{trivial}$ $1.215119325$ $[1, 1, 1, 39, -2310]$ \(y^2+xy+y=x^3+x^2+39x-2310\)
100011.c1 100011.c \( 3 \cdot 17 \cdot 37 \cdot 53 \) $1$ $\mathsf{trivial}$ $5.641553246$ $[1, 1, 1, 35551, 4633994]$ \(y^2+xy+y=x^3+x^2+35551x+4633994\)
100011.d1 100011.d \( 3 \cdot 17 \cdot 37 \cdot 53 \) $1$ $\Z/2\Z$ $2.710379409$ $[1, 0, 1, -692, 6941]$ \(y^2+xy+y=x^3-692x+6941\)
100011.d2 100011.d \( 3 \cdot 17 \cdot 37 \cdot 53 \) $1$ $\Z/2\Z$ $1.355189704$ $[1, 0, 1, -647, 7895]$ \(y^2+xy+y=x^3-647x+7895\)
100011.e1 100011.e \( 3 \cdot 17 \cdot 37 \cdot 53 \) $1$ $\mathsf{trivial}$ $4.521742922$ $[0, -1, 1, 9022524, -11690123677]$ \(y^2+y=x^3-x^2+9022524x-11690123677\)
100014.a1 100014.a \( 2 \cdot 3 \cdot 79 \cdot 211 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 20239, 521685]$ \(y^2+xy=x^3+x^2+20239x+521685\)
100014.b1 100014.b \( 2 \cdot 3 \cdot 79 \cdot 211 \) $2$ $\mathsf{trivial}$ $0.771377877$ $[1, 1, 1, -107, 377]$ \(y^2+xy+y=x^3+x^2-107x+377\)
100014.c1 100014.c \( 2 \cdot 3 \cdot 79 \cdot 211 \) $1$ $\Z/2\Z$ $4.756238768$ $[1, 1, 1, -1804, -29839]$ \(y^2+xy+y=x^3+x^2-1804x-29839\)
100014.c2 100014.c \( 2 \cdot 3 \cdot 79 \cdot 211 \) $1$ $\Z/2\Z$ $2.378119384$ $[1, 1, 1, -224, 497]$ \(y^2+xy+y=x^3+x^2-224x+497\)
100014.d1 100014.d \( 2 \cdot 3 \cdot 79 \cdot 211 \) $1$ $\mathsf{trivial}$ $0.459514252$ $[1, 1, 1, -224, 1361]$ \(y^2+xy+y=x^3+x^2-224x+1361\)
100014.e1 100014.e \( 2 \cdot 3 \cdot 79 \cdot 211 \) $1$ $\mathsf{trivial}$ $0.771181858$ $[1, 0, 0, -87037, -9623389]$ \(y^2+xy=x^3-87037x-9623389\)
100014.e2 100014.e \( 2 \cdot 3 \cdot 79 \cdot 211 \) $1$ $\Z/3\Z$ $2.313545576$ $[1, 0, 0, -11707, 482009]$ \(y^2+xy=x^3-11707x+482009\)
100014.f1 100014.f \( 2 \cdot 3 \cdot 79 \cdot 211 \) $2$ $\mathsf{trivial}$ $0.272567573$ $[1, 0, 0, -2196, -29808]$ \(y^2+xy=x^3-2196x-29808\)
100015.a1 100015.a \( 5 \cdot 83 \cdot 241 \) $1$ $\mathsf{trivial}$ $1.157324914$ $[0, 1, 1, -3811, 89295]$ \(y^2+y=x^3+x^2-3811x+89295\)
100016.a1 100016.a \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\Z/2\Z$ $2.249172616$ $[0, 1, 0, -84, -164]$ \(y^2=x^3+x^2-84x-164\)
100016.a2 100016.a \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\Z/2\Z$ $1.124586308$ $[0, 1, 0, 296, -924]$ \(y^2=x^3+x^2+296x-924\)
100016.b1 100016.b \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -3876052, -2938485540]$ \(y^2=x^3+x^2-3876052x-2938485540\)
100016.b2 100016.b \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -242247, -45976760]$ \(y^2=x^3+x^2-242247x-45976760\)
100016.c1 100016.c \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1745392, -887388736]$ \(y^2=x^3-x^2-1745392x-887388736\)
100016.d1 100016.d \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\mathsf{trivial}$ $0.745134110$ $[0, -1, 0, -152, 1264]$ \(y^2=x^3-x^2-152x+1264\)
100016.e1 100016.e \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\mathsf{trivial}$ $0.765042535$ $[0, -1, 0, 209, -5158]$ \(y^2=x^3-x^2+209x-5158\)
100016.f1 100016.f \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\mathsf{trivial}$ $1.646800567$ $[0, -1, 0, -35, 94]$ \(y^2=x^3-x^2-35x+94\)
100016.g1 100016.g \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\Z/2\Z$ $3.138258121$ $[0, 0, 0, -5171, -142350]$ \(y^2=x^3-5171x-142350\)
100016.g2 100016.g \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\Z/2\Z$ $6.276516243$ $[0, 0, 0, -2131, -308334]$ \(y^2=x^3-2131x-308334\)
100016.h1 100016.h \( 2^{4} \cdot 7 \cdot 19 \cdot 47 \) $1$ $\Z/4\Z$ $1.492748857$ $[0, 0, 0, -97691, 7610314]$ \(y^2=x^3-97691x+7610314\)
Next   There are too many results (2407309) to download.