Learn more

Refine search


Results (1-50 of 592709 matches)

Next   There are too many results (592709) to download.
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
10001.a1 10001.a \( 73 \cdot 137 \) $1$ $\Z/2\Z$ $3.470942657$ $[1, -1, 0, -53959, 4720704]$ \(y^2+xy=x^3-x^2-53959x+4720704\)
10001.a2 10001.a \( 73 \cdot 137 \) $1$ $\Z/2\Z$ $1.735471328$ $[1, -1, 0, -53594, 4788959]$ \(y^2+xy=x^3-x^2-53594x+4788959\)
10002.a1 10002.a \( 2 \cdot 3 \cdot 1667 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -101, -435]$ \(y^2+xy=x^3+x^2-101x-435\)
10002.a2 10002.a \( 2 \cdot 3 \cdot 1667 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -61, -731]$ \(y^2+xy=x^3+x^2-61x-731\)
10002.b1 10002.b \( 2 \cdot 3 \cdot 1667 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -810, 8532]$ \(y^2+xy=x^3+x^2-810x+8532\)
10002.c1 10002.c \( 2 \cdot 3 \cdot 1667 \) $1$ $\mathsf{trivial}$ $1.676238635$ $[1, 1, 0, -1804, 32080]$ \(y^2+xy=x^3+x^2-1804x+32080\)
10002.d1 10002.d \( 2 \cdot 3 \cdot 1667 \) $1$ $\mathsf{trivial}$ $0.213500995$ $[1, 1, 1, -354, 2415]$ \(y^2+xy+y=x^3+x^2-354x+2415\)
10002.e1 10002.e \( 2 \cdot 3 \cdot 1667 \) $1$ $\mathsf{trivial}$ $0.257460714$ $[1, 0, 0, -37, -7]$ \(y^2+xy=x^3-37x-7\)
10003.a1 10003.a \( 7 \cdot 1429 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 52, 208]$ \(y^2+xy+y=x^3+x^2+52x+208\)
10004.a1 10004.a \( 2^{2} \cdot 41 \cdot 61 \) $1$ $\mathsf{trivial}$ $1.724878115$ $[0, 0, 0, -536, -4508]$ \(y^2=x^3-536x-4508\)
10005.a1 10005.a \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.841750110$ $[0, 1, 1, -31666, -2179460]$ \(y^2+y=x^3+x^2-31666x-2179460\)
10005.b1 10005.b \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $0.285535232$ $[1, 1, 1, -1380, 19152]$ \(y^2+xy+y=x^3+x^2-1380x+19152\)
10005.b2 10005.b \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $0.571070465$ $[1, 1, 1, -75, 360]$ \(y^2+xy+y=x^3+x^2-75x+360\)
10005.c1 10005.c \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $1.130966506$ $[1, 1, 1, -40, 80]$ \(y^2+xy+y=x^3+x^2-40x+80\)
10005.c2 10005.c \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $0.565483253$ $[1, 1, 1, -15, 210]$ \(y^2+xy+y=x^3+x^2-15x+210\)
10005.d1 10005.d \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $6.562466036$ $[1, 1, 1, -1334000, -593592940]$ \(y^2+xy+y=x^3+x^2-1334000x-593592940\)
10005.d2 10005.d \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.281233018$ $[1, 1, 1, -83375, -9300940]$ \(y^2+xy+y=x^3+x^2-83375x-9300940\)
10005.d3 10005.d \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $1.640616509$ $[1, 1, 1, -82750, -9446440]$ \(y^2+xy+y=x^3+x^2-82750x-9446440\)
10005.d4 10005.d \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/4\Z$ $6.562466036$ $[1, 1, 1, -5250, -144690]$ \(y^2+xy+y=x^3+x^2-5250x-144690\)
10005.e1 10005.e \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.908072202$ $[0, -1, 1, -51, -124]$ \(y^2+y=x^3-x^2-51x-124\)
10005.f1 10005.f \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.440061521$ $[0, -1, 1, -609991, 183560811]$ \(y^2+y=x^3-x^2-609991x+183560811\)
10005.g1 10005.g \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $8.613946887$ $[0, 1, 1, -104207741, 135268278965]$ \(y^2+y=x^3+x^2-104207741x+135268278965\)
10005.h1 10005.h \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $6.026588428$ $[0, 1, 1, -2379061, -1411043480]$ \(y^2+y=x^3+x^2-2379061x-1411043480\)
10005.h2 10005.h \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/3\Z$ $2.008862809$ $[0, 1, 1, -124021, 14938111]$ \(y^2+y=x^3+x^2-124021x+14938111\)
10005.i1 10005.i \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.149133118$ $[0, 1, 1, -10597711, -13282563134]$ \(y^2+y=x^3+x^2-10597711x-13282563134\)
10005.j1 10005.j \( 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -1305, 12506]$ \(y^2+y=x^3+x^2-1305x+12506\)
10005.k1 10005.k \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/4\Z$ $6.375067733$ $[1, 1, 0, -5537, 156294]$ \(y^2+xy=x^3+x^2-5537x+156294\)
10005.k2 10005.k \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $1.593766933$ $[1, 1, 0, -1667, -24804]$ \(y^2+xy=x^3+x^2-1667x-24804\)
10005.k3 10005.k \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.187533866$ $[1, 1, 0, -362, 2079]$ \(y^2+xy=x^3+x^2-362x+2079\)
10005.k4 10005.k \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $6.375067733$ $[1, 1, 0, 43, 216]$ \(y^2+xy=x^3+x^2+43x+216\)
10005.l1 10005.l \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $2.668730558$ $[1, 1, 0, -112452, -14561001]$ \(y^2+xy=x^3+x^2-112452x-14561001\)
10005.l2 10005.l \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $5.337461116$ $[1, 1, 0, -6747, -248544]$ \(y^2+xy=x^3+x^2-6747x-248544\)
10005.m1 10005.m \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $1.420687301$ $[1, 0, 1, -374, 2747]$ \(y^2+xy+y=x^3-374x+2747\)
10005.m2 10005.m \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $0.710343650$ $[1, 0, 1, -349, 3137]$ \(y^2+xy+y=x^3-349x+3137\)
10005.n1 10005.n \( 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $2.812690896$ $[0, -1, 1, -16, -3]$ \(y^2+y=x^3-x^2-16x-3\)
10008.a1 10008.a \( 2^{3} \cdot 3^{2} \cdot 139 \) $1$ $\mathsf{trivial}$ $3.075675533$ $[0, 0, 0, -285267, -58644610]$ \(y^2=x^3-285267x-58644610\)
10008.b1 10008.b \( 2^{3} \cdot 3^{2} \cdot 139 \) $1$ $\mathsf{trivial}$ $0.462889396$ $[0, 0, 0, 6, 61]$ \(y^2=x^3+6x+61\)
10008.c1 10008.c \( 2^{3} \cdot 3^{2} \cdot 139 \) $1$ $\mathsf{trivial}$ $0.760997245$ $[0, 0, 0, 42, -151]$ \(y^2=x^3+42x-151\)
10008.d1 10008.d \( 2^{3} \cdot 3^{2} \cdot 139 \) $1$ $\mathsf{trivial}$ $0.949564868$ $[0, 0, 0, 117, 54]$ \(y^2=x^3+117x+54\)
10008.e1 10008.e \( 2^{3} \cdot 3^{2} \cdot 139 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -435, -4322]$ \(y^2=x^3-435x-4322\)
10008.f1 10008.f \( 2^{3} \cdot 3^{2} \cdot 139 \) $1$ $\Z/2\Z$ $5.494918381$ $[0, 0, 0, -11235, -458354]$ \(y^2=x^3-11235x-458354\)
10008.f2 10008.f \( 2^{3} \cdot 3^{2} \cdot 139 \) $1$ $\Z/2\Z$ $10.98983676$ $[0, 0, 0, -10875, -489098]$ \(y^2=x^3-10875x-489098\)
10008.g1 10008.g \( 2^{3} \cdot 3^{2} \cdot 139 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -111, -862]$ \(y^2=x^3-111x-862\)
10008.h1 10008.h \( 2^{3} \cdot 3^{2} \cdot 139 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -8211, 289118]$ \(y^2=x^3-8211x+289118\)
10010.a1 10010.a \( 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -78985959, -270129426454]$ \(y^2+xy+y=x^3-78985959x-270129426454\)
10010.a2 10010.a \( 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -5585639, -3040342038]$ \(y^2+xy+y=x^3-5585639x-3040342038\)
10010.a3 10010.a \( 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -2633144, 1164731142]$ \(y^2+xy+y=x^3-2633144x+1164731142\)
10010.a4 10010.a \( 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -2413624, 1442906886]$ \(y^2+xy+y=x^3-2413624x+1442906886\)
10010.b1 10010.b \( 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.396355067$ $[1, 0, 1, -463, 2538]$ \(y^2+xy+y=x^3-463x+2538\)
10010.b2 10010.b \( 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.792710135$ $[1, 0, 1, -183, -934]$ \(y^2+xy+y=x^3-183x-934\)
Next   There are too many results (592709) to download.