Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
50.a1 |
50a2 |
50.a |
50a |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{3} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.2, 5.24.0.4 |
3B.1.2, 5B.1.3 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.176793$ |
$-349938025/8$ |
$1.05078$ |
$6.67457$ |
$[1, 0, 1, -126, -552]$ |
\(y^2+xy+y=x^3-126x-552\) |
3.8.0-3.a.1.1, 5.24.0-5.a.2.1, 8.2.0.a.1, 15.192.1-15.a.1.1, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
50.a2 |
50a3 |
50.a |
50a |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{5} \cdot 5^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.1, 5.24.0.2 |
3B.1.1, 5B.1.4 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$2$ |
$10$ |
$0.078619$ |
$-121945/32$ |
$0.94334$ |
$6.38053$ |
$[1, 0, 1, -76, 298]$ |
\(y^2+xy+y=x^3-76x+298\) |
3.8.0-3.a.1.2, 5.24.0-5.a.1.1, 8.2.0.a.1, 15.192.1-15.a.4.4, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
50.a3 |
50a1 |
50.a |
50a |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2 \cdot 5^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.1, 5.24.0.4 |
3B.1.1, 5B.1.3 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$2$ |
$2$ |
$-0.726100$ |
$-25/2$ |
$1.09044$ |
$3.73025$ |
$[1, 0, 1, -1, -2]$ |
\(y^2+xy+y=x^3-x-2\) |
3.8.0-3.a.1.2, 5.24.0-5.a.2.1, 8.2.0.a.1, 15.192.1-15.a.2.3, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
50.a4 |
50a4 |
50.a |
50a |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.2, 5.24.0.2 |
3B.1.2, 5B.1.4 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.627926$ |
$46969655/32768$ |
$1.06296$ |
$7.80683$ |
$[1, 0, 1, 549, -2202]$ |
\(y^2+xy+y=x^3+549x-2202\) |
3.8.0-3.a.1.1, 5.24.0-5.a.1.1, 8.2.0.a.1, 15.192.1-15.a.3.2, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
50.b1 |
50b4 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{3} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.3 |
3B, 5B.1.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.627926$ |
$-349938025/8$ |
$1.05078$ |
$9.14302$ |
$[1, 1, 1, -3138, -68969]$ |
\(y^2+xy+y=x^3+x^2-3138x-68969\) |
3.4.0.a.1, 5.24.0-5.a.2.2, 8.2.0.a.1, 15.192.1-15.a.1.3, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
50.b2 |
50b3 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2 \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.3 |
3B, 5B.1.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$10$ |
$0.078619$ |
$-25/2$ |
$1.09044$ |
$6.19870$ |
$[1, 1, 1, -13, -219]$ |
\(y^2+xy+y=x^3+x^2-13x-219\) |
3.4.0.a.1, 5.24.0-5.a.2.2, 8.2.0.a.1, 15.192.1-15.a.2.4, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
50.b3 |
50b1 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{5} \cdot 5^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.1 |
3B, 5B.1.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$4$ |
$2$ |
$-0.726100$ |
$-121945/32$ |
$0.94334$ |
$3.91208$ |
$[1, 1, 1, -3, 1]$ |
\(y^2+xy+y=x^3+x^2-3x+1\) |
3.4.0.a.1, 5.24.0-5.a.1.2, 8.2.0.a.1, 15.192.1-15.a.4.3, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
50.b4 |
50b2 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.1 |
3B, 5B.1.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$4$ |
$6$ |
$-0.176793$ |
$46969655/32768$ |
$1.06296$ |
$5.33839$ |
$[1, 1, 1, 22, -9]$ |
\(y^2+xy+y=x^3+x^2+22x-9\) |
3.4.0.a.1, 5.24.0-5.a.1.2, 8.2.0.a.1, 15.192.1-15.a.3.1, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
324.b1 |
324d1 |
324.b |
324d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
8.4.0.2, 3.8.0.1, 5.5.0.1 |
3B.1.1, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$2$ |
$36$ |
$-0.304559$ |
$-316368$ |
$0.93828$ |
$3.91122$ |
$[0, 0, 0, -39, 94]$ |
\(y^2=x^3-39x+94\) |
3.8.0-3.a.1.2, 4.2.0.a.1, 5.5.0.a.1, 8.4.0-4.a.1.1, 12.16.0-12.a.1.6, $\ldots$ |
$[ ]$ |
324.b2 |
324d2 |
324.b |
324d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
8.4.0.2, 3.8.0.2, 5.5.0.1 |
3B.1.2, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$0$ |
$108$ |
$0.244747$ |
$432$ |
$0.77371$ |
$4.47962$ |
$[0, 0, 0, 81, 486]$ |
\(y^2=x^3+81x+486\) |
3.8.0-3.a.1.1, 4.2.0.a.1, 5.5.0.a.1, 8.4.0-4.a.1.1, 12.16.0-12.a.1.5, $\ldots$ |
$[ ]$ |
324.d1 |
324b2 |
324.d |
324b |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
4.2.0.1, 3.8.0.2, 5.5.0.1 |
3B.1.2, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$0$ |
$108$ |
$0.244747$ |
$-316368$ |
$0.93828$ |
$5.05150$ |
$[0, 0, 0, -351, -2538]$ |
\(y^2=x^3-351x-2538\) |
3.8.0-3.a.1.1, 4.2.0.a.1, 5.5.0.a.1, 12.16.0-12.a.1.5, 15.40.1-15.a.1.3, $\ldots$ |
$[ ]$ |
324.d2 |
324b1 |
324.d |
324b |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
4.2.0.1, 3.8.0.1, 5.5.0.1 |
3B.1.1, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$2$ |
$36$ |
$-0.304559$ |
$432$ |
$0.77371$ |
$3.33934$ |
$[0, 0, 0, 9, -18]$ |
\(y^2=x^3+9x-18\) |
3.8.0-3.a.1.2, 4.2.0.a.1, 5.5.0.a.1, 12.16.0-12.a.1.6, 15.40.1-15.a.1.4, $\ldots$ |
$[ ]$ |
400.d1 |
400c2 |
400.d |
400c |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$0.194697629$ |
$1$ |
|
$8$ |
$144$ |
$0.516354$ |
$-349938025/8$ |
$1.05078$ |
$5.74631$ |
$[0, -1, 0, -2008, 35312]$ |
\(y^2=x^3-x^2-2008x+35312\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 12.8.0-3.a.1.2, 15.96.1.a.1, $\ldots$ |
$[(28, 16)]$ |
400.d2 |
400c3 |
400.d |
400c |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{17} \cdot 5^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$0.324496049$ |
$1$ |
|
$8$ |
$240$ |
$0.771767$ |
$-121945/32$ |
$0.94334$ |
$5.55432$ |
$[0, -1, 0, -1208, -19088]$ |
\(y^2=x^3-x^2-1208x-19088\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 15.96.1.a.4, $\ldots$ |
$[(92, 800)]$ |
400.d3 |
400c1 |
400.d |
400c |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{13} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$0.064899209$ |
$1$ |
|
$12$ |
$48$ |
$-0.032952$ |
$-25/2$ |
$1.09044$ |
$3.82387$ |
$[0, -1, 0, -8, 112]$ |
\(y^2=x^3-x^2-8x+112\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 12.8.0-3.a.1.1, 15.96.1.a.2, $\ldots$ |
$[(12, 40)]$ |
400.d4 |
400c4 |
400.d |
400c |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{27} \cdot 5^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$0.973488147$ |
$1$ |
|
$4$ |
$720$ |
$1.321074$ |
$46969655/32768$ |
$1.06296$ |
$6.48561$ |
$[0, -1, 0, 8792, 140912]$ |
\(y^2=x^3-x^2+8792x+140912\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 15.96.1.a.3, $\ldots$ |
$[(68, 1024)]$ |
400.f1 |
400b4 |
400.f |
400b |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$720$ |
$1.321074$ |
$-349938025/8$ |
$1.05078$ |
$7.35804$ |
$[0, 1, 0, -50208, 4313588]$ |
\(y^2=x^3+x^2-50208x+4313588\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 20.24.0-5.a.2.2, $\ldots$ |
$[ ]$ |
400.f2 |
400b3 |
400.f |
400b |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{13} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$0.771767$ |
$-25/2$ |
$1.09044$ |
$5.43560$ |
$[0, 1, 0, -208, 13588]$ |
\(y^2=x^3+x^2-208x+13588\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.2, 20.24.0-5.a.2.2, $\ldots$ |
$[ ]$ |
400.f3 |
400b1 |
400.f |
400b |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{17} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$48$ |
$-0.032952$ |
$-121945/32$ |
$0.94334$ |
$3.94259$ |
$[0, 1, 0, -48, -172]$ |
\(y^2=x^3+x^2-48x-172\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 20.24.0-5.a.1.2, $\ldots$ |
$[ ]$ |
400.f4 |
400b2 |
400.f |
400b |
$4$ |
$15$ |
\( 2^{4} \cdot 5^{2} \) |
\( - 2^{27} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.516354$ |
$46969655/32768$ |
$1.06296$ |
$4.87388$ |
$[0, 1, 0, 352, 1268]$ |
\(y^2=x^3+x^2+352x+1268\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.3, 20.24.0-5.a.1.2, $\ldots$ |
$[ ]$ |
450.c1 |
450d4 |
450.c |
450d |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$900$ |
$1.177231$ |
$-349938025/8$ |
$1.05078$ |
$6.93365$ |
$[1, -1, 0, -28242, 1833916]$ |
\(y^2+xy=x^3-x^2-28242x+1833916\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.192.1-15.a.1.4, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
450.c2 |
450d3 |
450.c |
450d |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$300$ |
$0.627926$ |
$-25/2$ |
$1.09044$ |
$5.04827$ |
$[1, -1, 0, -117, 5791]$ |
\(y^2+xy=x^3-x^2-117x+5791\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.192.1-15.a.2.2, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
450.c3 |
450d1 |
450.c |
450d |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{5} \cdot 3^{6} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$-0.176793$ |
$-121945/32$ |
$0.94334$ |
$3.58404$ |
$[1, -1, 0, -27, -59]$ |
\(y^2+xy=x^3-x^2-27x-59\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.192.1-15.a.4.1, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
450.c4 |
450d2 |
450.c |
450d |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$180$ |
$0.372513$ |
$46969655/32768$ |
$1.06296$ |
$4.49737$ |
$[1, -1, 0, 198, 436]$ |
\(y^2+xy=x^3-x^2+198x+436\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.192.1-15.a.3.3, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
450.g1 |
450b2 |
450.g |
450b |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.1, 5.12.0.2 |
3B.1.1, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$2$ |
$180$ |
$0.372513$ |
$-349938025/8$ |
$1.05078$ |
$5.35299$ |
$[1, -1, 1, -1130, 14897]$ |
\(y^2+xy+y=x^3-x^2-1130x+14897\) |
3.8.0-3.a.1.2, 5.12.0.a.2, 8.2.0.a.1, 15.192.1-15.a.1.2, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
450.g2 |
450b3 |
450.g |
450b |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{5} \cdot 3^{6} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.2, 5.12.0.1 |
3B.1.2, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$300$ |
$0.627926$ |
$-121945/32$ |
$0.94334$ |
$5.16470$ |
$[1, -1, 1, -680, -8053]$ |
\(y^2+xy+y=x^3-x^2-680x-8053\) |
3.8.0-3.a.1.1, 5.12.0.a.1, 8.2.0.a.1, 15.192.1-15.a.4.2, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
450.g3 |
450b1 |
450.g |
450b |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.2, 5.12.0.2 |
3B.1.2, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$-0.176793$ |
$-25/2$ |
$1.09044$ |
$3.46761$ |
$[1, -1, 1, -5, 47]$ |
\(y^2+xy+y=x^3-x^2-5x+47\) |
3.8.0-3.a.1.1, 5.12.0.a.2, 8.2.0.a.1, 15.192.1-15.a.2.1, 24.16.0-24.a.1.6, $\ldots$ |
$[ ]$ |
450.g4 |
450b4 |
450.g |
450b |
$4$ |
$15$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.1, 5.12.0.1 |
3B.1.1, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$2$ |
$900$ |
$1.177231$ |
$46969655/32768$ |
$1.06296$ |
$6.07803$ |
$[1, -1, 1, 4945, 59447]$ |
\(y^2+xy+y=x^3-x^2+4945x+59447\) |
3.8.0-3.a.1.2, 5.12.0.a.1, 8.2.0.a.1, 15.192.1-15.a.3.4, 24.16.0-24.a.1.8, $\ldots$ |
$[ ]$ |
1296.a1 |
1296i1 |
1296.a |
1296i |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
8.4.0.2, 3.4.0.1, 5.5.0.1 |
3B, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$-0.304559$ |
$-316368$ |
$0.93828$ |
$3.15468$ |
$[0, 0, 0, -39, -94]$ |
\(y^2=x^3-39x-94\) |
3.4.0.a.1, 4.2.0.a.1, 5.5.0.a.1, 6.8.0-3.a.1.1, 8.4.0-4.a.1.1, $\ldots$ |
$[ ]$ |
1296.a2 |
1296i2 |
1296.a |
1296i |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
8.4.0.2, 3.4.0.1, 5.5.0.1 |
3B, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.244747$ |
$432$ |
$0.77371$ |
$3.61315$ |
$[0, 0, 0, 81, -486]$ |
\(y^2=x^3+81x-486\) |
3.4.0.a.1, 4.2.0.a.1, 5.5.0.a.1, 6.8.0-3.a.1.2, 8.4.0-4.a.1.1, $\ldots$ |
$[ ]$ |
1296.j1 |
1296g2 |
1296.j |
1296g |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
4.2.0.1, 3.4.0.1, 5.5.0.1 |
3B, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.244747$ |
$-316368$ |
$0.93828$ |
$4.07440$ |
$[0, 0, 0, -351, 2538]$ |
\(y^2=x^3-351x+2538\) |
3.4.0.a.1, 4.2.0.a.1, 5.5.0.a.1, 6.8.0-3.a.1.2, 12.16.0-12.a.1.2, $\ldots$ |
$[ ]$ |
1296.j2 |
1296g1 |
1296.j |
1296g |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{8} \cdot 3^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3, 5$ |
4.2.0.1, 3.4.0.1, 5.5.0.1 |
3B, 5S4 |
$120$ |
$160$ |
$4$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$-0.304559$ |
$432$ |
$0.77371$ |
$2.69343$ |
$[0, 0, 0, 9, 18]$ |
\(y^2=x^3+9x+18\) |
3.4.0.a.1, 4.2.0.a.1, 5.5.0.a.1, 6.8.0-3.a.1.1, 12.16.0-12.a.1.4, $\ldots$ |
$[ ]$ |
1600.i1 |
1600q4 |
1600.i |
1600q |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{21} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$1.667646$ |
$-349938025/8$ |
$1.05078$ |
$6.53916$ |
$[0, -1, 0, -200833, 34709537]$ |
\(y^2=x^3-x^2-200833x+34709537\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 10.24.0-5.a.2.2, 15.96.1.a.1, $\ldots$ |
$[ ]$ |
1600.i2 |
1600q3 |
1600.i |
1600q |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{19} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$1.118340$ |
$-25/2$ |
$1.09044$ |
$4.97795$ |
$[0, -1, 0, -833, 109537]$ |
\(y^2=x^3-x^2-833x+109537\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 10.24.0-5.a.2.2, 15.96.1.a.2, $\ldots$ |
$[ ]$ |
1600.i3 |
1600q1 |
1600.i |
1600q |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{23} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.313621$ |
$-121945/32$ |
$0.94334$ |
$3.76548$ |
$[0, -1, 0, -193, -1183]$ |
\(y^2=x^3-x^2-193x-1183\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 10.24.0-5.a.1.1, 15.96.1.a.4, $\ldots$ |
$[ ]$ |
1600.i4 |
1600q2 |
1600.i |
1600q |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{33} \cdot 5^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.862927$ |
$46969655/32768$ |
$1.06296$ |
$4.52177$ |
$[0, -1, 0, 1407, 8737]$ |
\(y^2=x^3-x^2+1407x+8737\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 10.24.0-5.a.1.1, 15.96.1.a.3, $\ldots$ |
$[ ]$ |
1600.j1 |
1600j2 |
1600.j |
1600j |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{21} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.862927$ |
$-349938025/8$ |
$1.05078$ |
$5.23027$ |
$[0, -1, 0, -8033, -274463]$ |
\(y^2=x^3-x^2-8033x-274463\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 12.8.0-3.a.1.4, 15.96.1.a.1, $\ldots$ |
$[ ]$ |
1600.j2 |
1600j3 |
1600.j |
1600j |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{23} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$1.118340$ |
$-121945/32$ |
$0.94334$ |
$5.07436$ |
$[0, -1, 0, -4833, 157537]$ |
\(y^2=x^3-x^2-4833x+157537\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 15.96.1.a.4, $\ldots$ |
$[ ]$ |
1600.j3 |
1600j1 |
1600.j |
1600j |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{19} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$0.313621$ |
$-25/2$ |
$1.09044$ |
$3.66906$ |
$[0, -1, 0, -33, -863]$ |
\(y^2=x^3-x^2-33x-863\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 12.8.0-3.a.1.3, 15.96.1.a.2, $\ldots$ |
$[ ]$ |
1600.j4 |
1600j4 |
1600.j |
1600j |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{33} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$1.667646$ |
$46969655/32768$ |
$1.06296$ |
$5.83065$ |
$[0, -1, 0, 35167, -1162463]$ |
\(y^2=x^3-x^2+35167x-1162463\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 15.96.1.a.3, $\ldots$ |
$[ ]$ |
1600.p1 |
1600v2 |
1600.p |
1600v |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{21} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$0.181367514$ |
$1$ |
|
$4$ |
$1152$ |
$0.862927$ |
$-349938025/8$ |
$1.05078$ |
$5.23027$ |
$[0, 1, 0, -8033, 274463]$ |
\(y^2=x^3+x^2-8033x+274463\) |
3.4.0.a.1, 5.12.0.a.2, 6.8.0-3.a.1.2, 8.2.0.a.1, 10.24.0-5.a.2.1, $\ldots$ |
$[(23, 320)]$ |
1600.p2 |
1600v3 |
1600.p |
1600v |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{23} \cdot 5^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$2.720512710$ |
$1$ |
|
$2$ |
$1920$ |
$1.118340$ |
$-121945/32$ |
$0.94334$ |
$5.07436$ |
$[0, 1, 0, -4833, -157537]$ |
\(y^2=x^3+x^2-4833x-157537\) |
3.4.0.a.1, 5.12.0.a.1, 6.8.0-3.a.1.1, 8.2.0.a.1, 10.24.0-5.a.1.2, $\ldots$ |
$[(247, 3712)]$ |
1600.p3 |
1600v1 |
1600.p |
1600v |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{19} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$0.544102542$ |
$1$ |
|
$4$ |
$384$ |
$0.313621$ |
$-25/2$ |
$1.09044$ |
$3.66906$ |
$[0, 1, 0, -33, 863]$ |
\(y^2=x^3+x^2-33x+863\) |
3.4.0.a.1, 5.12.0.a.2, 6.8.0-3.a.1.1, 8.2.0.a.1, 10.24.0-5.a.2.1, $\ldots$ |
$[(7, 32)]$ |
1600.p4 |
1600v4 |
1600.p |
1600v |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{33} \cdot 5^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$0.906837570$ |
$1$ |
|
$4$ |
$5760$ |
$1.667646$ |
$46969655/32768$ |
$1.06296$ |
$5.83065$ |
$[0, 1, 0, 35167, 1162463]$ |
\(y^2=x^3+x^2+35167x+1162463\) |
3.4.0.a.1, 5.12.0.a.1, 6.8.0-3.a.1.2, 8.2.0.a.1, 10.24.0-5.a.1.2, $\ldots$ |
$[(2183, 102400)]$ |
1600.q1 |
1600c4 |
1600.q |
1600c |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{21} \cdot 5^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$6.862779968$ |
$1$ |
|
$0$ |
$5760$ |
$1.667646$ |
$-349938025/8$ |
$1.05078$ |
$6.53916$ |
$[0, 1, 0, -200833, -34709537]$ |
\(y^2=x^3+x^2-200833x-34709537\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 20.24.0-5.a.2.4, $\ldots$ |
$[(10531/3, 986048/3)]$ |
1600.q2 |
1600c3 |
1600.q |
1600c |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{19} \cdot 5^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$120$ |
$384$ |
$9$ |
$2.287593322$ |
$1$ |
|
$2$ |
$1920$ |
$1.118340$ |
$-25/2$ |
$1.09044$ |
$4.97795$ |
$[0, 1, 0, -833, -109537]$ |
\(y^2=x^3+x^2-833x-109537\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.2, 20.24.0-5.a.2.4, $\ldots$ |
$[(59, 224)]$ |
1600.q3 |
1600c1 |
1600.q |
1600c |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{23} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$0.457518664$ |
$1$ |
|
$4$ |
$384$ |
$0.313621$ |
$-121945/32$ |
$0.94334$ |
$3.76548$ |
$[0, 1, 0, -193, 1183]$ |
\(y^2=x^3+x^2-193x+1183\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 20.24.0-5.a.1.4, $\ldots$ |
$[(27, 128)]$ |
1600.q4 |
1600c2 |
1600.q |
1600c |
$4$ |
$15$ |
\( 2^{6} \cdot 5^{2} \) |
\( - 2^{33} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$120$ |
$384$ |
$9$ |
$1.372555993$ |
$1$ |
|
$0$ |
$1152$ |
$0.862927$ |
$46969655/32768$ |
$1.06296$ |
$4.52177$ |
$[0, 1, 0, 1407, -8737]$ |
\(y^2=x^3+x^2+1407x-8737\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.3, 20.24.0-5.a.1.4, $\ldots$ |
$[(163/3, 4096/3)]$ |
2450.g1 |
2450p2 |
2450.g |
2450p |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$840$ |
$384$ |
$9$ |
$0.214947847$ |
$1$ |
|
$6$ |
$2160$ |
$0.796162$ |
$-349938025/8$ |
$1.05078$ |
$4.84204$ |
$[1, 1, 0, -6150, 183100]$ |
\(y^2+xy=x^3+x^2-6150x+183100\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 21.8.0-3.a.1.2, $\ldots$ |
$[(55, 95)]$ |
2450.g2 |
2450p3 |
2450.g |
2450p |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{5} \cdot 5^{8} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$840$ |
$384$ |
$9$ |
$3.224217708$ |
$1$ |
|
$2$ |
$3600$ |
$1.051575$ |
$-121945/32$ |
$0.94334$ |
$4.69464$ |
$[1, 1, 0, -3700, -106000]$ |
\(y^2+xy=x^3+x^2-3700x-106000\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 21.8.0-3.a.1.1, $\ldots$ |
$[(139, 1376)]$ |