Learn more

Refine search


Results (1-50 of 14258 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
19.a2 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -9, -15]$ \(y^2+y=x^3+x^2-9x-15\) 3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 38.2.0.a.1, 114.48.1.?, 171.216.4.?, $\ldots$
19.a3 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 1, 0]$ \(y^2+y=x^3+x^2+x\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 38.2.0.a.1, 114.16.0.?, $\ldots$
26.a2 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -5, -8]$ \(y^2+xy+y=x^3-5x-8\) 3.24.0-3.a.1.1, 104.2.0.?, 117.72.0.?, 312.48.1.?, 936.144.3.?
26.a3 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 0, 0]$ \(y^2+xy+y=x^3\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$
35.a2 35.a \( 5 \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -1, 0]$ \(y^2+y=x^3+x^2-x\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 63.72.0-63.e.1.2, 70.2.0.a.1, 210.16.0.?, $\ldots$
35.a3 35.a \( 5 \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 9, 1]$ \(y^2+y=x^3+x^2+9x+1\) 3.24.0-3.a.1.1, 63.72.0-63.b.1.3, 70.2.0.a.1, 210.48.1.?, 630.144.3.?
37.b2 37.b \( 37 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -23, -50]$ \(y^2+y=x^3+x^2-23x-50\) 3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 74.2.0.?, 222.48.1.?, 333.216.4.?, $\ldots$
37.b3 37.b \( 37 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -3, 1]$ \(y^2+y=x^3+x^2-3x+1\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 74.2.0.?, 222.16.0.?, $\ldots$
38.a2 38.a \( 2 \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -16, 22]$ \(y^2+xy+y=x^3-16x+22\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 152.2.0.?, 171.72.0.?, $\ldots$
38.a3 38.a \( 2 \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 9, 90]$ \(y^2+xy+y=x^3+9x+90\) 3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 152.2.0.?, 171.216.4.?, 456.48.1.?, $\ldots$
44.a2 44.a \( 2^{2} \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, 3, -1]$ \(y^2=x^3+x^2+3x-1\) 3.8.0-3.a.1.2, 22.2.0.a.1, 66.16.0-66.a.1.4
50.a2 50.a \( 2 \cdot 5^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -76, 298]$ \(y^2+xy+y=x^3-76x+298\) 3.8.0-3.a.1.2, 5.24.0-5.a.1.1, 8.2.0.a.1, 15.192.1-15.a.4.4, 24.16.0-24.a.1.8, $\ldots$
50.a3 50.a \( 2 \cdot 5^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -1, -2]$ \(y^2+xy+y=x^3-x-2\) 3.8.0-3.a.1.2, 5.24.0-5.a.2.1, 8.2.0.a.1, 15.192.1-15.a.2.3, 24.16.0-24.a.1.8, $\ldots$
77.b1 77.b \( 7 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -89, 295]$ \(y^2+y=x^3+x^2-89x+295\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 22.2.0.a.1, 63.72.0-63.e.1.2, 66.16.0-66.a.1.4, $\ldots$
77.b2 77.b \( 7 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -49, 600]$ \(y^2+y=x^3+x^2-49x+600\) 3.24.0-3.a.1.1, 22.2.0.a.1, 63.72.0-63.b.1.3, 66.48.1-66.b.1.1, 1386.144.3.?
91.b2 91.b \( 7 \cdot 13 \) $1$ $\Z/3\Z$ $1.059245086$ $[0, 1, 1, -7, 5]$ \(y^2+y=x^3+x^2-7x+5\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 117.72.0.?, 182.2.0.?, 546.16.0.?, $\ldots$
91.b3 91.b \( 7 \cdot 13 \) $1$ $\Z/3\Z$ $0.353081695$ $[0, 1, 1, 13, 42]$ \(y^2+y=x^3+x^2+13x+42\) 3.24.0-3.a.1.1, 117.72.0.?, 182.2.0.?, 546.48.1.?, 1638.144.3.?
92.b2 92.b \( 2^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, 2, 1]$ \(y^2=x^3+x^2+2x+1\) 3.8.0-3.a.1.2, 46.2.0.a.1, 138.16.0.?
106.c2 106.c \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 1, 1]$ \(y^2+xy=x^3+x+1\) 3.8.0-3.a.1.2, 424.2.0.?, 1272.16.0.?
106.d2 106.d \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -283, -2351]$ \(y^2+xy=x^3-283x-2351\) 3.8.0-3.a.1.2, 212.2.0.?, 636.16.0.?
110.a1 110.a \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -89, 316]$ \(y^2+xy+y=x^3-89x+316\) 3.8.0-3.a.1.2, 440.2.0.?, 1320.16.0.?
110.c1 110.c \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -1, 1]$ \(y^2+xy=x^3-x+1\) 3.8.0-3.a.1.2, 440.2.0.?, 1320.16.0.?
116.b1 116.b \( 2^{2} \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -4, 4]$ \(y^2=x^3+x^2-4x+4\) 3.8.0-3.a.1.2, 116.2.0.?, 348.16.0.?
124.a1 124.a \( 2^{2} \cdot 31 \) $1$ $\Z/3\Z$ $0.520530693$ $[0, 1, 0, -2, 1]$ \(y^2=x^3+x^2-2x+1\) 3.8.0-3.a.1.2, 62.2.0.a.1, 186.16.0.?
140.a2 140.a \( 2^{2} \cdot 5 \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -5, -25]$ \(y^2=x^3+x^2-5x-25\) 3.8.0-3.a.1.2, 70.2.0.a.1, 210.16.0.?
142.e2 142.e \( 2 \cdot 71 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -8, 8]$ \(y^2+xy=x^3-8x+8\) 3.8.0-3.a.1.2, 568.2.0.?, 1704.16.0.?
158.b2 158.b \( 2 \cdot 79 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -82, -92]$ \(y^2+xy+y=x^3-82x-92\) 3.24.0-3.a.1.1, 316.2.0.?, 711.72.0.?, 948.48.1.?, 2844.144.3.?
158.b3 158.b \( 2 \cdot 79 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -47, 118]$ \(y^2+xy+y=x^3-47x+118\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 316.2.0.?, 711.72.0.?, 948.16.0.?, $\ldots$
170.c1 170.c \( 2 \cdot 5 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -3, 6]$ \(y^2+xy+y=x^3-3x+6\) 3.8.0-3.a.1.2, 680.2.0.?, 2040.16.0.?
170.e2 170.e \( 2 \cdot 5 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 399, -919]$ \(y^2+xy=x^3+399x-919\) 3.8.0-3.a.1.2, 680.2.0.?, 2040.16.0.?
172.a1 172.a \( 2^{2} \cdot 43 \) $1$ $\Z/3\Z$ $0.760139663$ $[0, 1, 0, -13, 15]$ \(y^2=x^3+x^2-13x+15\) 3.8.0-3.a.1.2, 86.2.0.?, 258.16.0.?
178.b2 178.b \( 2 \cdot 89 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 6, -28]$ \(y^2+xy=x^3+6x-28\) 3.8.0-3.a.1.2, 356.2.0.?, 1068.16.0.?
182.d2 182.d \( 2 \cdot 7 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -193, -1055]$ \(y^2+xy=x^3-193x-1055\) 3.24.0-3.a.1.1, 728.2.0.?, 819.72.0.?, 2184.48.1.?, 6552.144.3.?
182.d3 182.d \( 2 \cdot 7 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 7, -7]$ \(y^2+xy=x^3+7x-7\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 728.2.0.?, 819.72.0.?, 2184.16.0.?, $\ldots$
187.a2 187.a \( 11 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 11, 30]$ \(y^2+y=x^3+x^2+11x+30\) 3.8.0-3.a.1.2, 22.2.0.a.1, 66.16.0-66.a.1.4
190.c2 190.c \( 2 \cdot 5 \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -30, -100]$ \(y^2+xy=x^3-30x-100\) 3.8.0-3.a.1.2, 152.2.0.?, 456.16.0.?
196.b2 196.b \( 2^{2} \cdot 7^{2} \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -114, -127]$ \(y^2=x^3+x^2-114x-127\) 2.2.0.a.1, 3.8.0-3.a.1.2, 4.4.0-2.a.1.1, 6.16.0-6.a.1.2, 9.24.0-9.b.1.2, $\ldots$
209.a1 209.a \( 11 \cdot 19 \) $1$ $\Z/3\Z$ $0.665117363$ $[0, 1, 1, -27, 55]$ \(y^2+y=x^3+x^2-27x+55\) 3.8.0-3.a.1.2, 22.2.0.a.1, 66.16.0-66.a.1.4
214.d2 214.d \( 2 \cdot 107 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 2, 4]$ \(y^2+xy=x^3+2x+4\) 3.8.0-3.a.1.2, 214.2.0.?, 642.16.0.?
218.a1 218.a \( 2 \cdot 109 \) $1$ $\Z/3\Z$ $0.573314547$ $[1, 0, 0, -2, 4]$ \(y^2+xy=x^3-2x+4\) 3.8.0-3.a.1.2, 436.2.0.?, 1308.16.0.?
236.b1 236.b \( 2^{2} \cdot 59 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -9, 8]$ \(y^2=x^3+x^2-9x+8\) 3.8.0-3.a.1.2, 118.2.0.?, 354.16.0.?
242.a2 242.a \( 2 \cdot 11^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 360, -970]$ \(y^2+xy+y=x^3+360x-970\) 3.8.0-3.a.1.2, 4.2.0.a.1, 8.4.0-4.a.1.1, 12.16.0-12.a.1.6, 24.32.0-24.b.1.8
254.b2 254.b \( 2 \cdot 127 \) $1$ $\Z/3\Z$ $1.294028472$ $[1, 0, 0, -302, -2036]$ \(y^2+xy=x^3-302x-2036\) 3.24.0-3.a.1.1, 1016.2.0.?, 1143.72.0.?, 3048.48.1.?, 9144.144.3.?
254.b3 254.b \( 2 \cdot 127 \) $1$ $\Z/3\Z$ $0.431342824$ $[1, 0, 0, -22, 36]$ \(y^2+xy=x^3-22x+36\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 1016.2.0.?, 1143.72.0.?, 3048.16.0.?, $\ldots$
278.a1 278.a \( 2 \cdot 139 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -602, 5628]$ \(y^2+xy+y=x^3-602x+5628\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 278.2.0.?, 834.16.0.?, 1251.72.0.?, $\ldots$
278.a2 278.a \( 2 \cdot 139 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -537, 6908]$ \(y^2+xy+y=x^3-537x+6908\) 3.24.0-3.a.1.1, 278.2.0.?, 834.48.1.?, 1251.72.0.?, 2502.144.3.?
286.a1 286.a \( 2 \cdot 11 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -7, 42]$ \(y^2+xy+y=x^3-7x+42\) 3.8.0-3.a.1.2, 1144.2.0.?, 3432.16.0.?
325.c2 325.c \( 5^{2} \cdot 13 \) $1$ $\Z/3\Z$ $1.988917661$ $[0, 1, 1, -83, 244]$ \(y^2+y=x^3+x^2-83x+244\) 3.8.0-3.a.1.2, 26.2.0.a.1, 78.16.0.?
326.a2 326.a \( 2 \cdot 163 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -355, 1182]$ \(y^2+xy+y=x^3-355x+1182\) 3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 1304.2.0.?, 1467.216.4.?, 3912.48.1.?, $\ldots$
326.a3 326.a \( 2 \cdot 163 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -300, 1970]$ \(y^2+xy+y=x^3-300x+1970\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 1304.2.0.?, 1467.72.0.?, $\ldots$
Next   displayed columns for results