Properties

Label 990.e
Number of curves $4$
Conductor $990$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 990.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 990.e do not have complex multiplication.

Modular form 990.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 4 q^{7} - q^{8} - q^{10} - q^{11} - 4 q^{13} + 4 q^{14} + q^{16} + 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 990.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
990.e1 990b3 \([1, -1, 0, -14109, 140165]\) \(15781142246787/8722841600\) \(171691691212800\) \([2]\) \(5184\) \(1.4219\)  
990.e2 990b1 \([1, -1, 0, -10734, 430740]\) \(5066026756449723/11000000\) \(297000000\) \([6]\) \(1728\) \(0.87260\) \(\Gamma_0(N)\)-optimal
990.e3 990b2 \([1, -1, 0, -10614, 440748]\) \(-4898016158612283/236328125000\) \(-6380859375000\) \([6]\) \(3456\) \(1.2192\)  
990.e4 990b4 \([1, -1, 0, 55011, 1066373]\) \(935355271080573/566899520000\) \(-11158283252160000\) \([2]\) \(10368\) \(1.7685\)