Properties

Label 98736dj
Number of curves $4$
Conductor $98736$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 98736dj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 98736dj do not have complex multiplication.

Modular form 98736.2.a.dj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + 4 q^{7} + q^{9} - 6 q^{13} + 2 q^{15} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 98736dj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
98736.dk3 98736dj1 \([0, 1, 0, -16029152, -22230979212]\) \(62768149033310713/6915442583808\) \(50180621841258431643648\) \([2]\) \(11059200\) \(3.0892\) \(\Gamma_0(N)\)-optimal
98736.dk2 98736dj2 \([0, 1, 0, -60789472, 158582809460]\) \(3423676911662954233/483711578981136\) \(3509963032868455519420416\) \([2, 2]\) \(22118400\) \(3.4358\)  
98736.dk4 98736dj3 \([0, 1, 0, 99162848, 852455973620]\) \(14861225463775641287/51859390496937804\) \(-376308013826644512735412224\) \([2]\) \(44236800\) \(3.7824\)  
98736.dk1 98736dj4 \([0, 1, 0, -936906912, 11037508285428]\) \(12534210458299016895673/315581882565708\) \(2289961187164111790850048\) \([4]\) \(44236800\) \(3.7824\)