Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 98736.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
98736.g1 | 98736cr1 | [0, -1, 0, -1750184, 884736624] | [2] | 3225600 | \(\Gamma_0(N)\)-optimal |
98736.g2 | 98736cr2 | [0, -1, 0, -511144, 2111881840] | [2] | 6451200 |
Rank
sage: E.rank()
The elliptic curves in class 98736.g have rank \(2\).
Complex multiplication
The elliptic curves in class 98736.g do not have complex multiplication.Modular form 98736.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.