Properties

Label 98315d
Number of curves $1$
Conductor $98315$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 98315d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
98315.i1 98315d1 \([1, -1, 0, 9305, -2221524]\) \(1431/35\) \(-2179089164397635\) \([]\) \(274752\) \(1.6233\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 98315d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 98315d do not have complex multiplication.

Modular form 98315.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} + q^{7} - 3 q^{8} - 3 q^{9} - q^{10} + q^{11} + 5 q^{13} + q^{14} - q^{16} - q^{17} - 3 q^{18} + 4 q^{19} + O(q^{20})\)  Toggle raw display