Properties

Label 98315c
Number of curves $1$
Conductor $98315$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 98315c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
98315.a1 98315c1 \([0, -1, 1, -936, 12042]\) \(-11505664/875\) \(-6904170875\) \([]\) \(75168\) \(0.63606\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 98315c1 has rank \(2\).

Complex multiplication

The elliptic curves in class 98315c do not have complex multiplication.

Modular form 98315.2.a.c

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - q^{5} + 2 q^{6} - q^{7} - 2 q^{9} + 2 q^{10} - 2 q^{12} - 5 q^{13} + 2 q^{14} + q^{15} - 4 q^{16} + 2 q^{17} + 4 q^{18} + 2 q^{19} + O(q^{20})\)  Toggle raw display