Properties

Label 98315.f
Number of curves $1$
Conductor $98315$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 98315.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
98315.f1 98315e1 \([0, 1, 1, -35, 121]\) \(-1736704/1715\) \(-4817435\) \([]\) \(15552\) \(-0.021830\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 98315.f1 has rank \(2\).

Complex multiplication

The elliptic curves in class 98315.f do not have complex multiplication.

Modular form 98315.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} + q^{5} - q^{7} - 2 q^{9} - 4 q^{11} - 2 q^{12} + 3 q^{13} + q^{15} + 4 q^{16} + 2 q^{17} - 8 q^{19} + O(q^{20})\)  Toggle raw display