Properties

Label 98315.e2
Conductor $98315$
Discriminant $-775752639515$
j-invariant \( -\frac{262144}{35} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 1, -3745, 99121])
 
gp: E = ellinit([0, -1, 1, -3745, 99121])
 
magma: E := EllipticCurve([0, -1, 1, -3745, 99121]);
 

\(y^2+y=x^3-x^2-3745x+99121\)  Toggle raw display

Mordell-Weil group structure

$\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(\frac{977}{16}, \frac{19631}{64}\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $2.9965808602855767736547914737$

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

None

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 98315 \)  =  $5 \cdot 7 \cdot 53^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-775752639515 $  =  $-1 \cdot 5 \cdot 7 \cdot 53^{6} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{262144}{35} \)  =  $-1 \cdot 2^{18} \cdot 5^{-1} \cdot 7^{-1}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $1.0139957917389559599846572342\dots$
Stable Faltings height: $-0.97115016503710495708757733531\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $2.9965808602855767736547914737\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.86897055792098188723913515977\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 2 $  = $ 1\cdot1\cdot2 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $1$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 5.2078810840353870480790975425094069448 $

Modular invariants

Modular form 98315.2.a.e

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} - 2q^{4} + q^{5} + q^{7} - 2q^{9} - 3q^{11} + 2q^{12} + 5q^{13} - q^{15} + 4q^{16} + 3q^{17} - 2q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 96096
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$5$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$53$ $2$ $I_0^{*}$ Additive 1 2 6 0

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 9.12.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
Reduction type ss ordinary split split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary add
$\lambda$-invariant(s) 2,7 1 2 2 1 1 1 5 1 1 1 1 1 1 1 -
$\mu$-invariant(s) 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3 and 9.
Its isogeny class 98315.e consists of 3 curves linked by isogenies of degrees dividing 9.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{53}) \) \(\Z/3\Z\) 2.2.53.1-1225.1-a2
$3$ 3.1.140.1 \(\Z/2\Z\) Not in database
$6$ 6.0.686000.1 \(\Z/2\Z \times \Z/2\Z\) Not in database
$6$ 6.0.6032030799375.1 \(\Z/3\Z\) Not in database
$6$ 6.6.357453677.1 \(\Z/9\Z\) Not in database
$6$ 6.2.2917989200.1 \(\Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/4\Z\) Not in database
$12$ Deg 12 \(\Z/3\Z \times \Z/3\Z\) Not in database
$12$ Deg 12 \(\Z/9\Z\) Not in database
$12$ Deg 12 \(\Z/2\Z \times \Z/6\Z\) Not in database
$18$ 18.0.1101251943215607654031636707182775000000000000.2 \(\Z/6\Z\) Not in database
$18$ 18.6.143230451386066940726565562688000000.1 \(\Z/18\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.