Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
9800.a1 |
9800bm1 |
9800.a |
9800bm |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{11} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.385879431$ |
$1$ |
|
$4$ |
$276480$ |
$2.169144$ |
$-30211716096/1071875$ |
$[0, 0, 0, -504700, -142173500]$ |
\(y^2=x^3-504700x-142173500\) |
9800.b1 |
9800c1 |
9800.b |
9800c |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
2.2.0.1 |
2Cn |
$0.813894369$ |
$1$ |
|
$4$ |
$23520$ |
$1.123312$ |
$48384$ |
$[0, 0, 0, -8575, -300125]$ |
\(y^2=x^3-8575x-300125\) |
9800.c1 |
9800bl1 |
9800.c |
9800bl |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 5^{2} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$1.480241903$ |
$1$ |
|
$2$ |
$8640$ |
$0.559435$ |
$270$ |
$[0, 0, 0, 245, 3430]$ |
\(y^2=x^3+245x+3430\) |
9800.d1 |
9800u2 |
9800.d |
9800u |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{8} \cdot 5^{9} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
16.96.3.346 |
2B |
$3.665399119$ |
$1$ |
|
$5$ |
$28800$ |
$1.451029$ |
$78608$ |
$[0, 1, 0, -34708, -2472912]$ |
\(y^2=x^3+x^2-34708x-2472912\) |
9800.d2 |
9800u1 |
9800.d |
9800u |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{9} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
16.96.3.338 |
2B |
$1.832699559$ |
$1$ |
|
$7$ |
$14400$ |
$1.104454$ |
$2048$ |
$[0, 1, 0, -4083, 38338]$ |
\(y^2=x^3+x^2-4083x+38338\) |
9800.e1 |
9800bk1 |
9800.e |
9800bk |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$0.325060528$ |
$1$ |
|
$4$ |
$768$ |
$-0.326232$ |
$1280$ |
$[0, 1, 0, 12, 13]$ |
\(y^2=x^3+x^2+12x+13\) |
9800.f1 |
9800s1 |
9800.f |
9800s |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$0.746483759$ |
$1$ |
|
$4$ |
$26880$ |
$1.451441$ |
$1280$ |
$[0, 1, 0, 14292, -384287]$ |
\(y^2=x^3+x^2+14292x-384287\) |
9800.g1 |
9800j1 |
9800.g |
9800j |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 5^{11} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.157307$ |
$-15298178/3125$ |
$[0, 1, 0, -6008, -210512]$ |
\(y^2=x^3+x^2-6008x-210512\) |
9800.h1 |
9800r1 |
9800.h |
9800r |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.977150844$ |
$1$ |
|
$4$ |
$57600$ |
$1.775234$ |
$-6288640/16807$ |
$[0, 1, 0, -34708, 5887713]$ |
\(y^2=x^3+x^2-34708x+5887713\) |
9800.i1 |
9800k2 |
9800.i |
9800k |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{10} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$1$ |
$1$ |
|
$1$ |
$18432$ |
$1.169615$ |
$2185454/625$ |
$[0, 1, 0, -6008, 125488]$ |
\(y^2=x^3+x^2-6008x+125488\) |
9800.i2 |
9800k1 |
9800.i |
9800k |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{8} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$1$ |
$1$ |
|
$1$ |
$9216$ |
$0.823041$ |
$19652/25$ |
$[0, 1, 0, 992, 13488]$ |
\(y^2=x^3+x^2+992x+13488\) |
9800.j1 |
9800y1 |
9800.j |
9800y |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{10} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$1$ |
$1$ |
|
$0$ |
$24480$ |
$1.322859$ |
$2450$ |
$[0, 1, 0, -10208, -218912]$ |
\(y^2=x^3+x^2-10208x-218912\) |
9800.k1 |
9800t1 |
9800.k |
9800t |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{4} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$6.746968978$ |
$1$ |
|
$0$ |
$34272$ |
$1.491095$ |
$2450$ |
$[0, 1, 0, -20008, 584688]$ |
\(y^2=x^3+x^2-20008x+584688\) |
9800.l1 |
9800l1 |
9800.l |
9800l |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{10} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.402107$ |
$-6400/7$ |
$[0, 1, 0, -10208, -678287]$ |
\(y^2=x^3+x^2-10208x-678287\) |
9800.m1 |
9800h1 |
9800.m |
9800h |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{7} \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.116549136$ |
$1$ |
|
$28$ |
$9216$ |
$0.770163$ |
$-2249728/5$ |
$[0, -1, 0, -3033, 65437]$ |
\(y^2=x^3-x^2-3033x+65437\) |
9800.n1 |
9800bf1 |
9800.n |
9800bf |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{7} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.688273271$ |
$1$ |
|
$4$ |
$18432$ |
$1.216343$ |
$-1024/35$ |
$[0, -1, 0, -1633, -196363]$ |
\(y^2=x^3-x^2-1633x-196363\) |
9800.o1 |
9800bc1 |
9800.o |
9800bc |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{11} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.696184627$ |
$1$ |
|
$4$ |
$11520$ |
$1.057510$ |
$137564/3125$ |
$[0, -1, 0, 992, 74012]$ |
\(y^2=x^3-x^2+992x+74012\) |
9800.p1 |
9800bn1 |
9800.p |
9800bn |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{9} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$46080$ |
$1.807745$ |
$1024/343$ |
$[0, -1, 0, 8167, -6830963]$ |
\(y^2=x^3-x^2+8167x-6830963\) |
9800.q1 |
9800bo1 |
9800.q |
9800bo |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 5^{8} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.855150$ |
$-10303010/49$ |
$[0, -1, 0, -206208, 36258412]$ |
\(y^2=x^3-x^2-206208x+36258412\) |
9800.r1 |
9800a1 |
9800.r |
9800a |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{7} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.667243892$ |
$1$ |
|
$4$ |
$6912$ |
$0.845713$ |
$-196/5$ |
$[0, -1, 0, -408, -21188]$ |
\(y^2=x^3-x^2-408x-21188\) |
9800.s1 |
9800be1 |
9800.s |
9800be |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
2.2.0.1 |
2Cn |
$4.152876836$ |
$1$ |
|
$2$ |
$23520$ |
$1.400801$ |
$12544$ |
$[0, -1, 0, -20008, -1004863]$ |
\(y^2=x^3-x^2-20008x-1004863\) |
9800.t1 |
9800bd1 |
9800.t |
9800bd |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{13} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.031518048$ |
$1$ |
|
$0$ |
$150528$ |
$2.346912$ |
$12459008/78125$ |
$[0, -1, 0, 262967, -162866563]$ |
\(y^2=x^3-x^2+262967x-162866563\) |
9800.u1 |
9800d3 |
9800.u |
9800d |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{6} \cdot 7^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$1$ |
$1$ |
|
$1$ |
$49152$ |
$1.775640$ |
$1443468546/7$ |
$[0, 0, 0, -366275, -85321250]$ |
\(y^2=x^3-366275x-85321250\) |
9800.u2 |
9800d4 |
9800.u |
9800d |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{6} \cdot 7^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$1$ |
$1$ |
|
$1$ |
$49152$ |
$1.775640$ |
$11090466/2401$ |
$[0, 0, 0, -72275, 5916750]$ |
\(y^2=x^3-72275x+5916750\) |
9800.u3 |
9800d2 |
9800.u |
9800d |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{10} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$24576$ |
$1.429068$ |
$740772/49$ |
$[0, 0, 0, -23275, -1286250]$ |
\(y^2=x^3-23275x-1286250\) |
9800.u4 |
9800d1 |
9800.u |
9800d |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$1$ |
$1$ |
|
$1$ |
$12288$ |
$1.082495$ |
$432/7$ |
$[0, 0, 0, 1225, -85750]$ |
\(y^2=x^3+1225x-85750\) |
9800.v1 |
9800z1 |
9800.v |
9800z |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{10} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.344060281$ |
$1$ |
|
$2$ |
$34560$ |
$1.716166$ |
$172800/343$ |
$[0, 0, 0, 30625, -3215625]$ |
\(y^2=x^3+30625x-3215625\) |
9800.w1 |
9800o1 |
9800.w |
9800o |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{4} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.739571953$ |
$1$ |
|
$6$ |
$6912$ |
$0.911447$ |
$172800/343$ |
$[0, 0, 0, 1225, -25725]$ |
\(y^2=x^3+1225x-25725\) |
9800.x1 |
9800ba3 |
9800.x |
9800ba |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{10} \cdot 5^{7} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.15 |
2B |
$3.156731320$ |
$1$ |
|
$3$ |
$27648$ |
$1.575460$ |
$132304644/5$ |
$[0, 0, 0, -131075, 18264750]$ |
\(y^2=x^3-131075x+18264750\) |
9800.x2 |
9800ba2 |
9800.x |
9800ba |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.35 |
2Cs |
$1.578365660$ |
$1$ |
|
$9$ |
$13824$ |
$1.228888$ |
$148176/25$ |
$[0, 0, 0, -8575, 257250]$ |
\(y^2=x^3-8575x+257250\) |
9800.x3 |
9800ba1 |
9800.x |
9800ba |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{7} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.15 |
2B |
$3.156731320$ |
$1$ |
|
$3$ |
$6912$ |
$0.882313$ |
$55296/5$ |
$[0, 0, 0, -2450, -42875]$ |
\(y^2=x^3-2450x-42875\) |
9800.x4 |
9800ba4 |
9800.x |
9800ba |
$4$ |
$4$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{10} \cdot 7^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.24.0.2 |
2B |
$3.156731320$ |
$1$ |
|
$3$ |
$27648$ |
$1.575460$ |
$237276/625$ |
$[0, 0, 0, 15925, 1457750]$ |
\(y^2=x^3+15925x+1457750\) |
9800.y1 |
9800g1 |
9800.y |
9800g |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{7} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$64512$ |
$1.743116$ |
$-2249728/5$ |
$[0, 1, 0, -148633, -22147637]$ |
\(y^2=x^3+x^2-148633x-22147637\) |
9800.z1 |
9800w1 |
9800.z |
9800w |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$80640$ |
$2.030468$ |
$137564/3125$ |
$[0, 1, 0, 48592, -25483312]$ |
\(y^2=x^3+x^2+48592x-25483312\) |
9800.ba1 |
9800e1 |
9800.ba |
9800e |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 5^{2} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$1$ |
$1$ |
|
$0$ |
$13824$ |
$1.050430$ |
$-10303010/49$ |
$[0, 1, 0, -8248, 286768]$ |
\(y^2=x^3+x^2-8248x+286768\) |
9800.bb1 |
9800p1 |
9800.bb |
9800p |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{3} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.385583318$ |
$1$ |
|
$6$ |
$9216$ |
$1.003025$ |
$1024/343$ |
$[0, 1, 0, 327, -54517]$ |
\(y^2=x^3+x^2+327x-54517\) |
9800.bc1 |
9800f1 |
9800.bc |
9800f |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{7} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$48384$ |
$1.818668$ |
$-196/5$ |
$[0, 1, 0, -20008, 7307488]$ |
\(y^2=x^3+x^2-20008x+7307488\) |
9800.bd1 |
9800bb1 |
9800.bd |
9800bb |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{13} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.521910054$ |
$1$ |
|
$4$ |
$21504$ |
$1.373959$ |
$12459008/78125$ |
$[0, 1, 0, 5367, 476363]$ |
\(y^2=x^3+x^2+5367x+476363\) |
9800.be1 |
9800x1 |
9800.be |
9800x |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
2.2.0.1 |
2Cn |
$1$ |
$1$ |
|
$0$ |
$3360$ |
$0.427845$ |
$12544$ |
$[0, 1, 0, -408, 2813]$ |
\(y^2=x^3+x^2-408x+2813\) |
9800.bf1 |
9800bp2 |
9800.bf |
9800bp |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{8} \cdot 5^{3} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
16.96.3.346 |
2B |
$1$ |
$1$ |
|
$1$ |
$5760$ |
$0.646310$ |
$78608$ |
$[0, -1, 0, -1388, -19228]$ |
\(y^2=x^3-x^2-1388x-19228\) |
9800.bf2 |
9800bp1 |
9800.bf |
9800bp |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{3} \cdot 7^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
16.96.3.338 |
2B |
$1$ |
$1$ |
|
$1$ |
$2880$ |
$0.299736$ |
$2048$ |
$[0, -1, 0, -163, 372]$ |
\(y^2=x^3-x^2-163x+372\) |
9800.bg1 |
9800bi1 |
9800.bg |
9800bi |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$2.178482631$ |
$1$ |
|
$0$ |
$5376$ |
$0.646723$ |
$1280$ |
$[0, -1, 0, 572, -3303]$ |
\(y^2=x^3-x^2+572x-3303\) |
9800.bh1 |
9800q1 |
9800.bh |
9800q |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$1.605696844$ |
$1$ |
|
$2$ |
$3840$ |
$0.478486$ |
$1280$ |
$[0, -1, 0, 292, 1037]$ |
\(y^2=x^3-x^2+292x+1037\) |
9800.bi1 |
9800b1 |
9800.bi |
9800b |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 5^{11} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.857888263$ |
$1$ |
|
$0$ |
$120960$ |
$2.130260$ |
$-15298178/3125$ |
$[0, -1, 0, -294408, 71616812]$ |
\(y^2=x^3-x^2-294408x+71616812\) |
9800.bj1 |
9800bg2 |
9800.bj |
9800bg |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$5.406904194$ |
$1$ |
|
$1$ |
$30720$ |
$1.543005$ |
$3543122/49$ |
$[0, -1, 0, -49408, 4192812]$ |
\(y^2=x^3-x^2-49408x+4192812\) |
9800.bj2 |
9800bg1 |
9800.bj |
9800bg |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{6} \cdot 7^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$2.703452097$ |
$1$ |
|
$3$ |
$15360$ |
$1.196432$ |
$-4/7$ |
$[0, -1, 0, -408, 174812]$ |
\(y^2=x^3-x^2-408x+174812\) |
9800.bk1 |
9800bh1 |
9800.bk |
9800bh |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.007896882$ |
$1$ |
|
$2$ |
$11520$ |
$0.970515$ |
$-6288640/16807$ |
$[0, -1, 0, -1388, 47657]$ |
\(y^2=x^3-x^2-1388x+47657\) |
9800.bl1 |
9800bj1 |
9800.bl |
9800bj |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{10} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$28.91293201$ |
$1$ |
|
$0$ |
$171360$ |
$2.295815$ |
$2450$ |
$[0, -1, 0, -500208, 74086412]$ |
\(y^2=x^3-x^2-500208x+74086412\) |
9800.bm1 |
9800n1 |
9800.bm |
9800n |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{4} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$1$ |
$1$ |
|
$0$ |
$4896$ |
$0.518139$ |
$2450$ |
$[0, -1, 0, -408, -1588]$ |
\(y^2=x^3-x^2-408x-1588\) |
9800.bn1 |
9800i2 |
9800.bn |
9800i |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{11} \cdot 5^{10} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$1$ |
$9$ |
$3$ |
$1$ |
$129024$ |
$2.142570$ |
$2185454/625$ |
$[0, -1, 0, -294408, -43631188]$ |
\(y^2=x^3-x^2-294408x-43631188\) |