Properties

Label 9792.l
Number of curves 6
Conductor 9792
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("9792.l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 9792.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9792.l1 9792bq5 [0, 0, 0, -15980556, -24588721136] [2] 196608  
9792.l2 9792bq3 [0, 0, 0, -998796, -384189680] [2, 2] 98304  
9792.l3 9792bq6 [0, 0, 0, -946956, -425848304] [2] 196608  
9792.l4 9792bq2 [0, 0, 0, -65676, -5342960] [2, 2] 49152  
9792.l5 9792bq1 [0, 0, 0, -19596, 979216] [2] 24576 \(\Gamma_0(N)\)-optimal
9792.l6 9792bq4 [0, 0, 0, 130164, -31115504] [2] 98304  

Rank

sage: E.rank()
 

The elliptic curves in class 9792.l have rank \(1\).

Modular form 9792.2.a.l

sage: E.q_eigenform(10)
 
\( q - 2q^{5} + 4q^{11} + 2q^{13} - q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.