sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 975h1 has
rank 1.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 3 | 1−T |
| 5 | 1 |
| 13 | 1+T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 2 |
1+2T2 |
1.2.a
|
| 7 |
1+T+7T2 |
1.7.b
|
| 11 |
1+T+11T2 |
1.11.b
|
| 17 |
1+T+17T2 |
1.17.b
|
| 19 |
1+4T+19T2 |
1.19.e
|
| 23 |
1+3T+23T2 |
1.23.d
|
| 29 |
1+8T+29T2 |
1.29.i
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 975h do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 975h
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 975.k1 |
975h1 |
[1,0,1,−46,−127] |
−417267265/19773 |
−494325 |
[] |
144 |
−0.14470
|
Γ0(N)-optimal |