Properties

Label 975h
Number of curves 11
Conductor 975975
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 975h1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
331T1 - T
5511
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+2T2 1 + 2 T^{2} 1.2.a
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1717 1+T+17T2 1 + T + 17 T^{2} 1.17.b
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+3T+23T2 1 + 3 T + 23 T^{2} 1.23.d
2929 1+8T+29T2 1 + 8 T + 29 T^{2} 1.29.i
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 975h do not have complex multiplication.

Modular form 975.2.a.h

Copy content sage:E.q_eigenform(10)
 
q+q2+q3q4+q63q73q8+q9q11q12+q133q14q165q17+q188q19+O(q20)q + q^{2} + q^{3} - q^{4} + q^{6} - 3 q^{7} - 3 q^{8} + q^{9} - q^{11} - q^{12} + q^{13} - 3 q^{14} - q^{16} - 5 q^{17} + q^{18} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 975h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
975.k1 975h1 [1,0,1,46,127][1, 0, 1, -46, -127] 417267265/19773-417267265/19773 494325-494325 [][] 144144 0.14470-0.14470 Γ0(N)\Gamma_0(N)-optimal