Show commands for:
SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()
Elliptic curves in class 97461n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
97461.p1 | 97461n1 | [1, -1, 0, -200664, 34629979] | [2] | 860160 | \(\Gamma_0(N)\)-optimal |
97461.p2 | 97461n2 | [1, -1, 0, -163179, 47937154] | [2] | 1720320 |
Rank
sage: E.rank()
The elliptic curves in class 97461n have rank \(0\).
Complex multiplication
The elliptic curves in class 97461n do not have complex multiplication.Modular form 97461.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.