Properties

Label 97461j
Number of curves $2$
Conductor $97461$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 97461j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
97461.u1 97461j1 [1, -1, 0, -5742, 11479] [2] 147456 \(\Gamma_0(N)\)-optimal
97461.u2 97461j2 [1, -1, 0, 22923, 74542] [2] 294912  

Rank

sage: E.rank()
 

The elliptic curves in class 97461j have rank \(0\).

Complex multiplication

The elliptic curves in class 97461j do not have complex multiplication.

Modular form 97461.2.a.j

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{4} - 3q^{8} + 4q^{11} - q^{13} - q^{16} + q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.