Show commands for:
SageMath
sage: E = EllipticCurve("v1")
sage: E.isogeny_class()
Elliptic curves in class 97461.v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
97461.v1 | 97461k4 | [1, -1, 0, -10915641, -13878310608] | [2] | 1966080 | |
97461.v2 | 97461k2 | [1, -1, 0, -682236, -216714933] | [2, 2] | 983040 | |
97461.v3 | 97461k3 | [1, -1, 0, -644751, -241612470] | [2] | 1966080 | |
97461.v4 | 97461k1 | [1, -1, 0, -44991, -2982960] | [2] | 491520 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 97461.v have rank \(0\).
Complex multiplication
The elliptic curves in class 97461.v do not have complex multiplication.Modular form 97461.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.