Minimal Weierstrass equation
\(y^2=x^3-190008x+32217668\)
Mordell-Weil group structure
\(\Z^2\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(344, 2750\right) \) | \( \left(\frac{1}{4}, \frac{45375}{8}\right) \) |
\(\hat{h}(P)\) | ≈ | $0.30435705854077376337644747805$ | $1.2205350831333608140046491130$ |
Integral points
\((-272,\pm 7986)\), \((212,\pm 1210)\), \((256,\pm 594)\), \((344,\pm 2750)\), \((421,\pm 5181)\), \((548,\pm 9626)\), \((844,\pm 21750)\), \((1213,\pm 39831)\), \((9844,\pm 975750)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 97020 \) | = | \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-9375100812000000 \) | = | \(-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} \cdot 11^{6} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{2239956387422208}{27680640625} \) | = | \(-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{-6} \cdot 7 \cdot 11^{-6} \cdot 13^{3} \cdot 29^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(0.36192198387266150066213379539\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.41132345811452227447329091208\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 72 \) = \( 3\cdot2\cdot2\cdot1\cdot( 2 \cdot 3 ) \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 97020.2.a.t
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 642816 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 10.718424142140347200137677019478694452 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \(IV^{*}\) | Additive | -1 | 2 | 8 | 0 |
\(3\) | \(2\) | \(III\) | Additive | 1 | 2 | 3 | 0 |
\(5\) | \(2\) | \(I_{6}\) | Non-split multiplicative | 1 | 1 | 6 | 6 |
\(7\) | \(1\) | \(II\) | Additive | -1 | 2 | 2 | 0 |
\(11\) | \(6\) | \(I_{6}\) | Split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B |
$p$-adic data
$p$-adic regulators
Note: \(p\)-adic regulator data only exists for primes \(p\ge 5\) of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | add | split | ordinary | ss | ordinary | ordinary | ss | ordinary | ordinary | ss | ordinary | ordinary |
$\lambda$-invariant(s) | - | - | 2 | - | 3 | 2 | 2,2 | 2 | 2 | 2,2 | 2 | 2 | 2,2 | 2 | 2 |
$\mu$-invariant(s) | - | - | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class 97020l
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.1.588.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.1037232.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$6$ | 6.2.588110544.1 | \(\Z/3\Z\) | Not in database |
$6$ | 6.0.2420208.1 | \(\Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$12$ | 12.0.52716660869376.1 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$18$ | 18.0.3067753524267383870305529050285577632047000000000000.2 | \(\Z/9\Z\) | Not in database |
$18$ | 18.2.203412153331596396123869184.1 | \(\Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.