Show commands for:
SageMath

sage: E = EllipticCurve("h1")

sage: E.isogeny_class()

## Elliptic curves in class 97020h

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

97020.a1 | 97020h1 | [0, 0, 0, -21168, 1083537] | [2] | 387072 | \(\Gamma_0(N)\)-optimal |

97020.a2 | 97020h2 | [0, 0, 0, 25137, 5167638] | [2] | 774144 |

## Rank

sage: E.rank()

The elliptic curves in class 97020h have rank \(1\).

## Complex multiplication

The elliptic curves in class 97020h do not have complex multiplication.## Modular form 97020.2.a.h

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.