Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 97020g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
97020.j2 | 97020g1 | [0, 0, 0, 777, 8078] | [] | 82944 | \(\Gamma_0(N)\)-optimal |
97020.j1 | 97020g2 | [0, 0, 0, -20223, 1115478] | [] | 248832 |
Rank
sage: E.rank()
The elliptic curves in class 97020g have rank \(1\).
Complex multiplication
The elliptic curves in class 97020g do not have complex multiplication.Modular form 97020.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.